Developer Reference

Intel® oneAPI Math Kernel Library LAPACK Examples

ID 766877
Date 3/31/2023
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

ZGESV Example Program in Fortran

*  Copyright (C) 2009-2015 Intel Corporation. All Rights Reserved.
*  The information and material ("Material") provided below is owned by Intel
*  Corporation or its suppliers or licensors, and title to such Material remains
*  with Intel Corporation or its suppliers or licensors. The Material contains
*  proprietary information of Intel or its suppliers and licensors. The Material
*  is protected by worldwide copyright laws and treaty provisions. No part of
*  the Material may be copied, reproduced, published, uploaded, posted,
*  transmitted, or distributed in any way without Intel's prior express written
*  permission. No license under any patent, copyright or other intellectual
*  property rights in the Material is granted to or conferred upon you, either
*  expressly, by implication, inducement, estoppel or otherwise. Any license
*  under such intellectual property rights must be express and approved by Intel
*  in writing.
*  =============================================================================
*
*  ZGESV Example.
*  ==============
*
*  The program computes the solution to the system of linear
*  equations with a square matrix A and multiple
*  right-hand sides B, where A is the coefficient matrix:
*
*  (  1.23, -5.50) (  7.91, -5.38) ( -9.80, -4.86) ( -7.32,  7.57)
*  ( -2.14, -1.12) ( -9.92, -0.79) ( -9.18, -1.12) (  1.37,  0.43)
*  ( -4.30, -7.10) ( -6.47,  2.52) ( -6.51, -2.67) ( -5.86,  7.38)
*  (  1.27,  7.29) (  8.90,  6.92) ( -8.82,  1.25) (  5.41,  5.37)
*
*  and B is the right-hand side matrix:
*
*  (  8.33, -7.32) ( -6.11, -3.81)
*  ( -6.18, -4.80) (  0.14, -7.71)
*  ( -5.71, -2.80) (  1.41,  3.40)
*  ( -1.60,  3.08) (  8.54, -4.05)
*
*  Description.
*  ============
*
*  The routine solves for X the system of linear equations A*X = B,
*  where A is an n-by-n matrix, the columns of matrix B are individual
*  right-hand sides, and the columns of X are the corresponding
*  solutions.
*
*  The LU decomposition with partial pivoting and row interchanges is
*  used to factor A as A = P*L*U, where P is a permutation matrix, L
*  is unit lower triangular, and U is upper triangular. The factored
*  form of A is then used to solve the system of equations A*X = B.
*
*  Example Program Results.
*  ========================
*
* ZGESV Example Program Results
*
* Solution
* ( -1.09, -0.18) (  1.28,  1.21)
* (  0.97,  0.52) ( -0.22, -0.97)
* ( -0.20,  0.19) (  0.53,  1.36)
* ( -0.59,  0.92) (  2.22, -1.00)
*
* Details of LU factorization
* ( -4.30, -7.10) ( -6.47,  2.52) ( -6.51, -2.67) ( -5.86,  7.38)
* (  0.49,  0.47) ( 12.26, -3.57) ( -7.87, -0.49) ( -0.98,  6.71)
* (  0.25, -0.15) ( -0.60, -0.37) (-11.70, -4.64) ( -1.35,  1.38)
* ( -0.83, -0.32) (  0.05,  0.58) (  0.93, -0.50) (  2.66,  7.86)
*
* Pivot indices
*      3      3      3      4
*  =============================================================================
*
*     .. Parameters ..
      INTEGER          N, NRHS
      PARAMETER        ( N = 4, NRHS = 2 )
      INTEGER          LDA, LDB
      PARAMETER        ( LDA = N, LDB = N )
*
*     .. Local Scalars ..
      INTEGER          INFO
*
*     .. Local Arrays ..
      INTEGER          IPIV( N )
      COMPLEX*16       A( LDA, N ), B( LDB, NRHS )
      DATA             A/
     $ ( 1.23,-5.50),(-2.14,-1.12),(-4.30,-7.10),( 1.27, 7.29),
     $ ( 7.91,-5.38),(-9.92,-0.79),(-6.47, 2.52),( 8.90, 6.92),
     $ (-9.80,-4.86),(-9.18,-1.12),(-6.51,-2.67),(-8.82, 1.25),
     $ (-7.32, 7.57),( 1.37, 0.43),(-5.86, 7.38),( 5.41, 5.37)
     $                  /
      DATA             B/
     $ ( 8.33,-7.32),(-6.18,-4.80),(-5.71,-2.80),(-1.60, 3.08),
     $ (-6.11,-3.81),( 0.14,-7.71),( 1.41, 3.40),( 8.54,-4.05)
     $                  /
*
*     .. External Subroutines ..
      EXTERNAL         ZGESV
      EXTERNAL         PRINT_MATRIX, PRINT_INT_VECTOR
*
*     .. Executable Statements ..
      WRITE(*,*)'ZGESV Example Program Results'
*
*     Solve the equations A*X = B.
*
      CALL ZGESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO )
*
*     Check for the exact singularity.
*
      IF( INFO.GT.0 ) THEN
         WRITE(*,*)'The diagonal element of the triangular factor of A,'
         WRITE(*,*)'U(',INFO,',',INFO,') is zero, so that'
         WRITE(*,*)'A is singular; the solution could not be computed.'
         STOP
      END IF
*
*     Print solution.
*
      CALL PRINT_MATRIX( 'Solution', N, NRHS, B, LDB )
*
*     Print details of LU factorization.
*
      CALL PRINT_MATRIX( 'Details of LU factorization', N, N, A, LDA )
*
*     Print pivot indices.
*
      CALL PRINT_INT_VECTOR( 'Pivot indices', N, IPIV )
      STOP
      END
*
*     End of ZGESV Example.
*
*  =============================================================================
*
*     Auxiliary routine: printing a matrix.
*
      SUBROUTINE PRINT_MATRIX( DESC, M, N, A, LDA )
      CHARACTER*(*)    DESC
      INTEGER          M, N, LDA
      COMPLEX*16       A( LDA, * )
*
      INTEGER          I, J
*
      WRITE(*,*)
      WRITE(*,*) DESC
      DO I = 1, M
         WRITE(*,9998) ( A( I, J ), J = 1, N )
      END DO
*
 9998 FORMAT( 11(:,1X,'(',F6.2,',',F6.2,')') )
      RETURN
      END
*
*     Auxiliary routine: printing a vector of integers.
*
      SUBROUTINE PRINT_INT_VECTOR( DESC, N, A )
      CHARACTER*(*)    DESC
      INTEGER          N
      INTEGER          A( N )
*
      INTEGER          I
*
      WRITE(*,*)
      WRITE(*,*) DESC
      WRITE(*,9999) ( A( I ), I = 1, N )
*
 9999 FORMAT( 11(:,1X,I6) )
      RETURN
      END