Visible to Intel only — GUID: GUID-68CEF4D4-C9D9-44EF-9252-CBFFBF84DEEA
Visible to Intel only — GUID: GUID-68CEF4D4-C9D9-44EF-9252-CBFFBF84DEEA
Threadpool interoperability API
Overview
API extensions to interact with the underlying Threadpool run-time. More…
// global functions dnnl_status_t DNNL_API dnnl_threadpool_interop_stream_create( dnnl_stream_t* stream, dnnl_engine_t engine, void* threadpool ); dnnl_status_t DNNL_API dnnl_threadpool_interop_stream_get_threadpool( dnnl_stream_t astream, void** threadpool ); dnnl_status_t DNNL_API dnnl_threadpool_interop_set_max_concurrency(int max_concurrency); dnnl_status_t DNNL_API dnnl_threadpool_interop_get_max_concurrency(int* max_concurrency); dnnl_status_t DNNL_API dnnl_threadpool_interop_sgemm( char transa, char transb, dnnl_dim_t M, dnnl_dim_t N, dnnl_dim_t K, float alpha, const float* A, dnnl_dim_t lda, const float* B, dnnl_dim_t ldb, float beta, float* C, dnnl_dim_t ldc, void* threadpool ); dnnl_status_t DNNL_API dnnl_threadpool_interop_gemm_u8s8s32( char transa, char transb, char offsetc, dnnl_dim_t M, dnnl_dim_t N, dnnl_dim_t K, float alpha, const uint8_t* A, dnnl_dim_t lda, uint8_t ao, const int8_t* B, dnnl_dim_t ldb, int8_t bo, float beta, int32_t* C, dnnl_dim_t ldc, const int32_t* co, void* threadpool ); dnnl_status_t DNNL_API dnnl_threadpool_interop_gemm_s8s8s32( char transa, char transb, char offsetc, dnnl_dim_t M, dnnl_dim_t N, dnnl_dim_t K, float alpha, const int8_t* A, dnnl_dim_t lda, int8_t ao, const int8_t* B, dnnl_dim_t ldb, int8_t bo, float beta, int32_t* C, dnnl_dim_t ldc, const int32_t* co, void* threadpool );
Detailed Documentation
API extensions to interact with the underlying Threadpool run-time.
Global Functions
dnnl_status_t DNNL_API dnnl_threadpool_interop_stream_create( dnnl_stream_t* stream, dnnl_engine_t engine, void* threadpool )
Creates an execution stream with specified threadpool.
Parameters:
stream |
Output execution stream. |
engine |
Engine to create the execution stream on. |
threadpool |
Pointer to an instance of a C++ class that implements dnnl::threapdool_iface interface. |
Returns:
dnnl_success on success and a status describing the error otherwise.
See also:
Using oneDNN with Threadpool-Based Threading
dnnl_status_t DNNL_API dnnl_threadpool_interop_stream_get_threadpool( dnnl_stream_t astream, void** threadpool )
Returns a threadpool to be used by the execution stream.
Parameters:
astream |
Execution stream. |
threadpool |
Output pointer to an instance of a C++ class that implements dnnl::threapdool_iface interface. Set to NULL if the stream was created without threadpool. |
Returns:
dnnl_success on success and a status describing the error otherwise.
See also:
Using oneDNN with Threadpool-Based Threading
dnnl_status_t DNNL_API dnnl_threadpool_interop_set_max_concurrency(int max_concurrency)
Sets the maximum concurrency assumed by oneDNN when outside a parallel call.
Parameters:
max_concurrency |
The maximum concurrency assumed by oneDNN when outside a parallel call. This is a threadlocal setting. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_threadpool_interop_get_max_concurrency(int* max_concurrency)
Gets the maximum concurrency assumed by oneDNN when outside a parallel call.
Parameters:
max_concurrency |
The maximum concurrency assumed by oneDNN when outside a parallel call. This is a threadlocal setting. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_threadpool_interop_sgemm( char transa, char transb, dnnl_dim_t M, dnnl_dim_t N, dnnl_dim_t K, float alpha, const float* A, dnnl_dim_t lda, const float* B, dnnl_dim_t ldb, float beta, float* C, dnnl_dim_t ldc, void* threadpool )
Performs single-precision matrix-matrix multiply.
The operation is defined as:
C := alpha * op( A ) * op( B ) + beta * C
where
op( X ) = X or op( X ) = X**T,
alpha and beta are scalars, and
A, B, and C are matrices:
op( A ) is an MxK matrix,
op( B ) is an KxN matrix,
C is an MxN matrix.
The matrices are assumed to be stored in row-major order (the elements in each of the matrix rows are contiguous in memory).
Parameters:
transa |
Transposition flag for matrix A: ‘N’ or ‘n’ means A is not transposed, and ‘T’ or ‘t’ means that A is transposed. |
transb |
Transposition flag for matrix B: ‘N’ or ‘n’ means B is not transposed, and ‘T’ or ‘t’ means that B is transposed. |
M |
The M dimension. |
N |
The N dimension. |
K |
The K dimension. |
alpha |
The alpha parameter that is used to scale the product of matrices A and B. |
A |
A pointer to the A matrix data. |
lda |
The leading dimension for the matrix A. |
B |
A pointer to the B matrix data. |
ldb |
The leading dimension for the matrix B. |
beta |
The beta parameter that is used to scale the matrix C. |
C |
A pointer to the C matrix data. |
ldc |
The leading dimension for the matrix C. |
threadpool |
A pointer to a threadpool interface (only when built with the THREADPOOL CPU runtime). |
Returns:
dnnl_success / dnnl::status::success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_threadpool_interop_gemm_u8s8s32( char transa, char transb, char offsetc, dnnl_dim_t M, dnnl_dim_t N, dnnl_dim_t K, float alpha, const uint8_t* A, dnnl_dim_t lda, uint8_t ao, const int8_t* B, dnnl_dim_t ldb, int8_t bo, float beta, int32_t* C, dnnl_dim_t ldc, const int32_t* co, void* threadpool )
Performs integer matrix-matrix multiply on 8-bit unsigned matrix A, 8-bit signed matrix B, and 32-bit signed resulting matrix C.
The operation is defined as:
C := alpha * (op(A) - A_offset) * (op(B) - B_offset) + beta * C + C_offset
where
op( X ) = X or op( X ) = X**T,
alpha and beta are scalars, and
A, B, and C are matrices:
op( A ) is an MxK matrix,
op( B ) is an KxN matrix,
C is an MxN matrix.
A_offset is an MxK matrix with every element equal the ao value,
B_offset is an KxN matrix with every element equal the bo value,
C_offset is an MxN matrix which is defined by the co array of size len :
if offsetc = F : the len must be at least 1,
if offsetc = C : the len must be at least max(1, m),
if offsetc = R : the len must be at least max(1, n),
The matrices are assumed to be stored in row-major order (the elements in each of the matrix rows are contiguous in memory).
Parameters:
transa |
Transposition flag for matrix A: ‘N’ or ‘n’ means A is not transposed, and ‘T’ or ‘t’ means that A is transposed. |
transb |
Transposition flag for matrix B: ‘N’ or ‘n’ means B is not transposed, and ‘T’ or ‘t’ means that B is transposed. |
offsetc |
Flag specifying how offsets should be applied to matrix C:
|
M |
The M dimension. |
N |
The N dimension. |
K |
The K dimension. |
alpha |
The alpha parameter that is used to scale the product of matrices A and B. |
A |
A pointer to the A matrix data. |
lda |
The leading dimension for the matrix A. |
ao |
The offset value for the matrix A. |
B |
A pointer to the B matrix data. |
ldb |
The leading dimension for the matrix B. |
bo |
The offset value for the matrix B. |
beta |
The beta parameter that is used to scale the matrix C. |
C |
A pointer to the C matrix data. |
ldc |
The leading dimension for the matrix C. |
co |
An array of offset values for the matrix C. The number of elements in the array depends on the value of offsetc. |
threadpool |
A pointer to a threadpool interface (only when built with the THREADPOOL CPU runtime). |
Returns:
dnnl_success / dnnl::status::success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_threadpool_interop_gemm_s8s8s32( char transa, char transb, char offsetc, dnnl_dim_t M, dnnl_dim_t N, dnnl_dim_t K, float alpha, const int8_t* A, dnnl_dim_t lda, int8_t ao, const int8_t* B, dnnl_dim_t ldb, int8_t bo, float beta, int32_t* C, dnnl_dim_t ldc, const int32_t* co, void* threadpool )
Performs integer matrix-matrix multiply on 8-bit signed matrix A, 8-bit signed matrix B, and 32-bit signed resulting matrix C.
The operation is defined as:
C := alpha * (op(A) - A_offset) * (op(B) - B_offset) + beta * C + C_offset
where
op( X ) = X or op( X ) = X**T,
alpha and beta are scalars, and
A, B, and C are matrices:
op( A ) is an MxK matrix,
op( B ) is an KxN matrix,
C is an MxN matrix.
A_offset is an MxK matrix with every element equal the ao value,
B_offset is an KxN matrix with every element equal the bo value,
C_offset is an MxN matrix which is defined by the co array of size len :
if offsetc = F : the len must be at least 1,
if offsetc = C : the len must be at least max(1, m),
if offsetc = R : the len must be at least max(1, n),
The matrices are assumed to be stored in row-major order (the elements in each of the matrix rows are contiguous in memory).
Parameters:
transa |
Transposition flag for matrix A: ‘N’ or ‘n’ means A is not transposed, and ‘T’ or ‘t’ means that A is transposed. |
transb |
Transposition flag for matrix B: ‘N’ or ‘n’ means B is not transposed, and ‘T’ or ‘t’ means that B is transposed. |
offsetc |
Flag specifying how offsets should be applied to matrix C:
|
M |
The M dimension. |
N |
The N dimension. |
K |
The K dimension. |
alpha |
The alpha parameter that is used to scale the product of matrices A and B. |
A |
A pointer to the A matrix data. |
lda |
The leading dimension for the matrix A. |
ao |
The offset value for the matrix A. |
B |
A pointer to the B matrix data. |
ldb |
The leading dimension for the matrix B. |
bo |
The offset value for the matrix B. |
beta |
The beta parameter that is used to scale the matrix C. |
C |
A pointer to the C matrix data. |
ldc |
The leading dimension for the matrix C. |
co |
An array of offset values for the matrix C. The number of elements in the array depends on the value of offsetc. |
threadpool |
A pointer to a threadpool interface (only when built with the THREADPOOL CPU runtime). |
Returns:
dnnl_success / dnnl::status::success on success and a status describing the error otherwise.