Visible to Intel only — GUID: GUID-A2B3B8FD-179B-4A8C-9B43-3762D6399D3A
Abs
AbsBackward
Add
AvgPool
AvgPoolBackward
BatchNormForwardTraining
BatchNormInference
BatchNormTrainingBackward
BiasAdd
BiasAddBackward
Clamp
ClampBackward
Concat
Convolution
ConvolutionBackwardData
ConvolutionBackwardWeights
ConvTranspose
ConvTransposeBackwardData
ConvTransposeBackwardWeights
Dequantize
Divide
DynamicDequantize
DynamicQuantize
Elu
EluBackward
End
Exp
GELU
GELUBackward
HardSigmoid
HardSigmoidBackward
HardSwish
HardSwishBackward
Interpolate
InterpolateBackward
LayerNorm
LayerNormBackward
LeakyReLU
Log
LogSoftmax
LogSoftmaxBackward
MatMul
Maximum
MaxPool
MaxPoolBackward
Minimum
Mish
MishBackward
Multiply
PReLU
PReLUBackward
Quantize
Reciprocal
ReduceL1
ReduceL2
ReduceMax
ReduceMean
ReduceMin
ReduceProd
ReduceSum
ReLU
ReLUBackward
Reorder
Round
Sigmoid
SigmoidBackward
Softmax
SoftmaxBackward
SoftPlus
SoftPlusBackward
Sqrt
SqrtBackward
Square
SquaredDifference
StaticReshape
StaticTranspose
Subtract
Tanh
TanhBackward
TypeCast
Wildcard
enum dnnl_alg_kind_t
enum dnnl_normalization_flags_t
Overview
Detailed Documentation
enum dnnl_primitive_kind_t
enum dnnl_prop_kind_t
enum dnnl_query_t
enum dnnl::normalization_flags
enum dnnl::query
struct dnnl_exec_arg_t
struct dnnl_primitive
struct dnnl_primitive_desc
struct dnnl::primitive
struct dnnl::primitive_desc
struct dnnl::primitive_desc_base
enum dnnl_rnn_direction_t
enum dnnl_rnn_flags_t
enum dnnl::rnn_direction
enum dnnl::rnn_flags
struct dnnl::augru_backward
struct dnnl::augru_forward
struct dnnl::gru_backward
struct dnnl::gru_forward
struct dnnl::lbr_augru_backward
struct dnnl::lbr_augru_forward
struct dnnl::lbr_gru_backward
struct dnnl::lbr_gru_forward
struct dnnl::lstm_backward
struct dnnl::lstm_forward
struct dnnl::rnn_primitive_desc_base
struct dnnl::vanilla_rnn_backward
struct dnnl::vanilla_rnn_forward
Visible to Intel only — GUID: GUID-A2B3B8FD-179B-4A8C-9B43-3762D6399D3A
enum dnnl_normalization_flags_t
Overview
Flags for normalization primitives. More…
#include <dnnl_types.h> enum dnnl_normalization_flags_t { dnnl_normalization_flags_none = 0x0U, dnnl_use_global_stats = 0x1U, dnnl_use_scale = 0x2U, dnnl_use_shift = 0x4U, dnnl_fuse_norm_relu = 0x8U, dnnl_fuse_norm_add_relu = 0x10U, };
Detailed Documentation
Flags for normalization primitives.
Enum Values
dnnl_normalization_flags_none
Use no normalization flags.
If specified - on forward training propagation mean and variance are computed and stored as output - on backward propagation compute full derivative wrt data - on backward propagation prop_kind == #dnnl_backward_data has the same behavior as prop_kind == #dnnl_backward
dnnl_use_global_stats
Use global statistics.
If specified - on forward propagation use mean and variance provided by user (input) - on backward propagation reduces the amount of computations, since mean and variance are considered as constants If not specified: - on forward propagation mean and variance are computed and stored as output - on backward propagation compute full derivative wrt data
dnnl_use_scale
Use scale parameter.
If specified: - on forward propagation use scale for the normalization results - on backward propagation (for prop_kind == #dnnl_backward) compute diff wrt scale (hence one extra output used)
dnnl_use_shift
Use shift parameter.
If specified: - on forward propagation use shift (aka bias) for the normalization results - on backward propagation (for prop_kind == #dnnl_backward) compute diff wrt shift (hence one extra output used)
dnnl_fuse_norm_relu
Fuse with ReLU.
The flag implies negative slope being 0. On training this is the only configuration supported. For inference, to use non-zero negative slope consider using @ref dev_guide_attributes_post_ops. If specified: - on inference this option behaves the same as if the primitive were fused with ReLU using post ops API with zero negative slope. - on training primitive requires workspace (required to be able to perform backward pass)
dnnl_fuse_norm_add_relu
Fuse with Add and then fuse with ReLU.
If specified: - on forward propagation apply element-wise binary Add operation to to the normalization results with an additional input tensor and then apply ReLU with negative slope being 0. - on training primitive requires workspace (required to be able to perform backward pass). - on backward propagation save the result of backward ReLU operation with input tensor and workspace from forward pass to extra output tensor and then perform backward normalization.