Visible to Intel only — GUID: uhz1645762417774
Ixiasoft
1. About the Nios® V Embedded Processor
2. Nios® V Processor Hardware System Design with Quartus® Prime Software and Platform Designer
3. Nios® V Processor Software System Design
4. Nios® V Processor Configuration and Booting Solutions
5. Nios® V Processor - Using the MicroC/TCP-IP Stack
6. Nios® V Processor Debugging, Verifying, and Simulating
7. Nios® V Processor — Remote System Update
8. Nios® V Processor — Using Custom Instruction
9. Nios® V Embedded Processor Design Handbook Archives
10. Document Revision History for the Nios® V Embedded Processor Design Handbook
2.1. Creating Nios® V Processor System Design with Platform Designer
2.2. Integrating Platform Designer System into the Quartus® Prime Project
2.3. Designing a Nios® V Processor Memory System
2.4. Clocks and Resets Best Practices
2.5. Assigning a Default Agent
2.6. Assigning a UART Agent for Printing
2.7. JTAG Signals
4.1. Introduction
4.2. Linking Applications
4.3. Nios® V Processor Booting Methods
4.4. Introduction to Nios® V Processor Booting Methods
4.5. Nios® V Processor Booting from Configuration QSPI Flash
4.6. Nios® V Processor Booting from On-Chip Memory (OCRAM)
4.7. Nios® V Processor Booting from Tightly Coupled Memory (TCM)
4.8. Summary of Nios® V Processor Vector Configuration and BSP Settings
6.2.3.2.1. Enabling Signal Tap Logic Analyzer
6.2.3.2.2. Adding Signals for Monitoring and Debugging
6.2.3.2.3. Specifying Trigger Conditions
6.2.3.2.4. Assigning the Acquisition Clock, Sample Depth, and Memory Type, and Buffer Acquisition Mode
6.2.3.2.5. Compiling the Design and Programming the Target Device
6.6.1. Prerequisites
6.6.2. Setting Up and Generating Your Simulation Environment in Platform Designer
6.6.3. Creating Nios V Processor Software
6.6.4. Generating Memory Initialization File
6.6.5. Generating System Simulation Files
6.6.6. Running Simulation in the QuestaSim Simulator Using Command Line
Visible to Intel only — GUID: uhz1645762417774
Ixiasoft
5.4.4. Hardware Design Files
Despite the example designs functioned differently, they share similar hardware design and BSP settings. The only difference lies in their respective Nios V application source code, one for the Simple Socket Server application, while the other for the iPerf 2 application.
The µC/TCP-IP example designs are developed using the Platform Designer. The hardware files can be generated using the build_sof.py Python script. The example design consist of:
- Nios® V Processor Intel FPGA IP
- On-Chip Memory II Intel FPGA IP for System Memory and Descriptor Memory
- JTAG UART Intel FPGA IP
- System ID Peripheral Intel FPGA IP
- Parallel I/O Intel FPGA IP (PIO)
- Modular Scatter-Gather DMA Intel FPGA IP (mSGDMA)
- Triple-Speed Ethernet Intel FPGA IP (TSE)
Figure 92. Hardware Block Diagram
Note:
- (1) The first n bytes are reserved for mSGDMA descriptor buffers, where n is the number of bytes taken by the configured RX or TX buffers. Applications must not use this memory region.
- (2) For MAC variations without internet FIFO buffers, the transmit and receive FIFOs are external to the MAC function.
- (3) Only one buffer type (RX or TX buffers) can reside in the descriptor memory.