Visible to Intel only — GUID: iga1409353026788
Ixiasoft
Visible to Intel only — GUID: iga1409353026788
Ixiasoft
7.9.6.3. Procedure Linkage Table
Function calls in a position-dependent executable may use the call and jmpi instructions, which address the contents of a 256-MB segment. They may also use the %lo, %hi, and %hiadj operators to take the address of a function. If the function is in another shared object, the link editor creates a callable stub in the executable called a PLT entry. The PLT entry loads the address of the called function from the PLT GOT (a region at the start of the GOT) and transfers control to it.
The PLT GOT entry needs a relocation referring to the final symbol, of type R_NIOS2_JUMP_SLOT. The dynamic linker may immediately resolve it, or may leave it unmodified for lazy binding. The link editor fills in an initial value pointing to the lazy binding stubs at the start of the PLT section.
Each PLT entry appears as shown in the example below.
PLT Entry
.PLTn: orhi r15, r0, %hiadj(plt_got_slot_address) ldw r15, %lo(plt_got_slot_address)(r15) jmp r15
The example below shows the PLT entry when the PLT GOT is close enough to the small data area for a relative jump.
PLT Entry Near Small Data Area
.PLTn: ldw r15, %gprel(plt_got_slot_address)(gp) jmp r15
Initial PLT Entry
res_0: br .PLTresolve ... .PLTresolve: orhi r14, r0, %hiadj(res_0) addi r14, r14, %lo(res_0) sub r15, r15, r14 orhi r13, %hiadj(_GLOBAL_OFFSET_TABLE_) ldw r14, %lo(_GLOBAL_OFFSET_TABLE_+4)(r13) ldw r13, %lo(_GLOBAL_OFFSET_TABLE_+8)(r13) jmp r13
In front of the initial PLT entry, a series of branches start of the initial entry (the nextpc instruction). There is one branch for each PLT entry, labelled res_0 through res_N. The last several branches may be replaced by nop instructions to improve performance. The link editor arranges for the Nth PLT entry to point to the Nth branch; res_N – res_0 is four times the index into the .rela.plt section for the corresponding R_JUMP_SLOT relocation.
The dynamic linker initializes GOT[1] to a unique identifier for each library and GOT[2] to the address of the runtime resolver routine. In order for the two loads in .PLTresolve to share the same %hiadj, _GLOBAL_OFFSET_TABLE_ must be aligned to a 16-byte boundary.
The runtime resolver receives the original function arguments in r4 through r7, the shared library identifier from GOT[1] in r14, and the relocation index times four in r15. The resolver updates the corresponding PLT GOT entry so that the PLT entry transfers control directly to the target in the future, and then transfers control to the target.
In shared objects, the call and jmpi instructions can not be used because the library load address is not known at link time. Calls to functions outside the current shared object must pass through the GOT. The program loads function addresses using %call, and the link editor may arrange for such entries to be lazily bound. Because PLT entries are only used for lazy binding, shared object PLTs are smaller, as shown below.
Shared Object PLT
.PLTn: orhi r15, r0, %hiadj(index * 4) addi r15, r15, %lo(index * 4) br .PLTresolve
Initial PLT Entry
.PLTresolve: nextpc r14 orhi r13, r0, %hiadj(_GLOBAL_OFFSET_TABLE_) add r13, r13, r14 ldw r14, %lo(_GLOBAL_OFFSET_TABLE_+4)(r13) ldw r13, %lo(_GLOBAL_OFFSET_TABLE_+8)(r13) jmp r13
If the initial PLT entry is out of range, the resolver can be inline, because it is only one instruction longer than a long branch, as shown below.
Initial PLT Entry Out of Range
.PLTn: orhi r15, r0, %hiadj(index * 4) addi r15, r15, %lo(index * 4) nextpc r14 orhi r13, r0, %hiadj(_GLOBAL_OFFSET_TABLE_) add r13, r13, r14 ldw r14, %lo(_GLOBAL_OFFSET_TABLE_+4)(r13) ldw r13, %lo(_GLOBAL_OFFSET_TABLE_+8)(r13) jmp r13