Visible to Intel only — GUID: mwh1410471139008
Ixiasoft
Answers to Top FAQs
1. Signal Integrity Analysis with Third-Party Tools
2. Reviewing Printed Circuit Board Schematics with the Quartus® Prime Software
3. Siemens EDA PCB Design Tools Support
4. Cadence Board Design Tools Support
5. Quartus® Prime Pro Edition User Guide: PCB Design Tools Document Archives
A. Quartus® Prime Pro Edition User Guides
1.4.1. IBIS Model Access and Customization Flows
1.4.2. Elements of an IBIS Model
1.4.3. Customizing IBIS Models
1.4.4. Design Simulation Using the Siemens EDA HyperLynx* Software
1.4.5. Configuring LineSim to Use Intel IBIS Models
1.4.6. Integrating Intel IBIS Models into LineSim Simulations
1.4.7. Running and Interpreting LineSim Simulations
1.5.1. Supported Devices and Signaling
1.5.2. Accessing HSPICE Simulation Kits
1.5.3. The Double Counting Problem in HSPICE Simulations
1.5.4. HSPICE Writer Tool Flow
1.5.5. Running an HSPICE Simulation
1.5.6. Interpreting the Results of an Output Simulation
1.5.7. Interpreting the Results of an Input Simulation
1.5.8. Viewing and Interpreting Tabular Simulation Results
1.5.9. Viewing Graphical Simulation Results
1.5.10. Making Design Adjustments Based on HSPICE Simulations
1.5.11. Sample Input for I/O HSPICE Simulation Deck
1.5.12. Sample Output for I/O HSPICE Simulation Deck
1.5.13. Advanced Topics
1.5.12.1. Header Comment
1.5.12.2. Simulation Conditions
1.5.12.3. Simulation Options
1.5.12.4. Constant Definition
1.5.12.5. I/O Buffer Netlist
1.5.12.6. Drive Strength
1.5.12.7. Slew Rate and Delay Chain
1.5.12.8. I/O Buffer Instantiation
1.5.12.9. Board and Trace Termination
1.5.12.10. Double-Counting Compensation Circuitry
1.5.12.11. Simulation Analysis
2.1. Reviewing Quartus® Prime Software Settings
2.2. Reviewing Device Pin-Out Information in the Fitter Report
2.3. Reviewing Compilation Error and Warning Messages
2.4. Using Additional Quartus® Prime Software Features
2.5. Using Additional Quartus® Prime Software Tools
2.6. Reviewing Printed Circuit Board Schematics with the Quartus® Prime Software Revision History
4.1. Cadence PCB Design Tools Support
4.2. Product Comparison
4.3. FPGA-to-PCB Design Flow
4.4. Setting Up the Quartus® Prime Software
4.5. FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
4.6. FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
4.7. Cadence Board Design Tools Support Revision History
Visible to Intel only — GUID: mwh1410471139008
Ixiasoft
1.5.13.2. Hold Time Analysis
Intel recommends performing worst-case hold time analysis using the fast corner models, which use fast transistors, high voltage, and low temperature. This involves modifying the SPICE decks to select the correct temperature option, change the supply voltage sources, and load the correct fast transistor models. The values of these parameters are located in the header comment section of the corresponding simulation deck files.
For a truly worst-case analysis, combine the HSPICE Writer hold time analysis results with the Quartus® Prime software fast timing model. This requires that you change the double-counting compensation circuitry in the simulations files to also simulate the fast process corners, as this is what the Quartus® Prime software uses for the fast timing model.
Note: This method of hold time analysis is recommended only for globally synchronous buses. Do not apply this method of hold-time analysis to source synchronous buses. This is because the source synchronous clocking scheme is designed to cancel out some of the PVT timing effects. If this is not taken into account, the timing results are not accurate. Proper source synchronous timing analysis is beyond the scope of this document.