Visible to Intel only — GUID: bmk1607608163978
Ixiasoft
1. Intel Agilex® 7 Configuration User Guide
2. Intel Agilex® 7 Configuration Details
3. Intel Agilex® 7 Configuration Schemes
4. Including the Reset Release Intel® FPGA IP in Your Design
5. Remote System Update (RSU)
6. Intel Agilex® 7 Configuration Features
7. Intel Agilex® 7 Debugging Guide
8. Intel Agilex® 7 Configuration User Guide Archives
9. Document Revision History for the Intel Agilex® 7 Configuration User Guide
2.1. Intel Agilex® 7 Configuration Timing Diagram
2.2. Configuration Flow Diagram
2.3. Device Response to Configuration and Reset Events
2.4. Additional Clock Requirements for HPS and Transceivers
2.5. Intel Agilex® 7 Configuration Pins
2.6. Configuration Clocks
2.7. Intel Agilex® 7 Configuration Time Estimation
2.8. Generating Compressed .sof File
3.1.1. Avalon® -ST Configuration Scheme Hardware Components and File Types
3.1.2. Enabling Avalon-ST Device Configuration
3.1.3. The AVST_READY Signal
3.1.4. RBF Configuration File Format
3.1.5. Avalon-ST Single-Device Configuration
3.1.6. Debugging Guidelines for the Avalon® -ST Configuration Scheme
3.1.7. IP for Use with the Avalon® -ST Configuration Scheme: Intel FPGA Parallel Flash Loader II IP Core
3.1.7.4.1. PFL II IP Recommended Design Constraints to FPGA Avalon-ST Pins
3.1.7.4.2. PFL II IP Recommended Design Constraints for Using QSPI Flash
3.1.7.4.3. PFL II IP Recommended Design Constraints for using CFI Flash
3.1.7.4.4. PFL II IP Recommended Constraints for Other Input Pins
3.1.7.4.5. PFL II IP Recommended Constraints for Other Output Pins
3.2.1. AS Configuration Scheme Hardware Components and File Types
3.2.2. AS Single-Device Configuration
3.2.3. AS Using Multiple Serial Flash Devices
3.2.4. AS Configuration Timing Parameters
3.2.5. Skew Tolerance Guidelines
3.2.6. Programming Serial Flash Devices
3.2.7. Serial Flash Memory Layout
3.2.8. AS_CLK
3.2.9. Active Serial Configuration Software Settings
3.2.10. Intel® Quartus® Prime Programming Steps
3.2.11. Debugging Guidelines for the AS Configuration Scheme
5.1. Remote System Update Functional Description
5.2. Guidelines for Performing Remote System Update Functions for Non-HPS
5.3. Commands and Responses
5.4. Quad SPI Flash Layout
5.5. Generating Remote System Update Image Files Using the Programming File Generator
5.6. Remote System Update from FPGA Core Example
5.7. Debugging Guidelines for RSU Configuration
5.6.1. Prerequisites
5.6.2. Creating Initial Flash Image Containing Bitstreams for Factory Image and One Application Image
5.6.3. Programming Flash Memory with the Initial Remote System Update Image
5.6.4. Reconfiguring the Device with an Application or Factory Image
5.6.5. Adding an Application Image
5.6.6. Removing an Application Image
7.1. Configuration Debugging Checklist
7.2. Intel Agilex® 7 Configuration Architecture Overview
7.3. Understanding Configuration Status Using quartus_pgm command
7.4. Configuration File Format Differences
7.5. Understanding SEUs
7.6. Reading the Unique 64-Bit CHIP ID
7.7. E-Tile Transceivers May Fail To Configure
7.8. Understanding and Troubleshooting Configuration Pin Behavior
Visible to Intel only — GUID: bmk1607608163978
Ixiasoft
5.5.1.2. Generating the Initial RSU Image Using RBF Files
Follow these steps to generate the initial RSU image using .rbf file:
- Run the following command to generate a .rbf file from a factory or application image file (.sof).
quartus_pfg -c factory.sof factory.rbf quartus_pfg -c app1.sof app1.rbf quartus_pfg -c app2.sof app2.rbf
- Run the following command to generate a boot .rbf file from a factory image file (.sof)
quartus_pfg -c factory.sof boot.rbf -o rsu_boot=ON
- On the File menu, click Programming File Generator.
- Select Intel Agilex® 7 from the Device family drop-down list.
- Select the configuration scheme from the Configuration mode drop-down list. The current Intel® Quartus® Prime only supports remote system update feature in Active Serial x4.
- On the Output Files tab, assign the output directory and file name.
- Select the output file type.
- JTAG Indirect Configuration File (.jic)/Programmer Object File (.pof)
- Memory Map File (.map)
- Raw Programming File (.rpd)
- On the Input Files tab, click Add Bitstream, select the factory image .rbf file and click Open. Repeat this step for the application image .rbf.
- On the Configuration Device tab, click Add Device, select your flash memory and click OK. The Programming File Generator tool automatically populates the flash partitions.
- Assign boot.rbf to the BOOT_INFO partition.
- To enable direct factory image fallback, select the BOOT_INFO partition, click the Edit... button, and set Direct factory image fallback to On. This step is optional.
- Assign factory.rbf to the FACTORY_IMAGE partition.
Note: You must assign a factory image input file. The Programming File Generator is unable to generate output files if input files are missing for the FACTORY_IMAGE partition.
- Assign app1.rbf and app2.rbf to the P1 and P2 respectively.
Note: P1 and P2 are user-defined partition names.
- If you generate the .jic file, click Select at the Flash Loader. Select the device family and device name. Click OK.
- Click Generate to generate the remote system update programming files. After generating the programming file, you can proceed to program the flash memory.
Figure 70. Generating Remote System Update Programming Files