Visible to Intel only — GUID: mwh1410471145780
Ixiasoft
1. Simultaneous Switching Noise (SSN) Analysis and Optimizations
2. Signal Integrity Analysis with Third-Party Tools
3. Mentor Graphics* PCB Design Tools Support
4. Cadence PCB Design Tools Support
5. Reviewing Printed Circuit Board Schematics with the Intel® Quartus® Prime Software
A. Intel® Quartus® Prime Standard Edition User Guides
1.1. Simultaneous Switching Noise (SSN) Analysis and Optimizations
1.2. Definitions
1.3. Understanding SSN
1.4. SSN Estimation Tools
1.5. SSN Analysis Overview
1.6. Design Factors Affecting SSN Results
1.7. Optimizing Your Design for SSN Analysis
1.8. Performing SSN Analysis and Viewing Results
1.9. Decreasing Processing Time for SSN Analysis
1.10. Scripting Support
1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History
1.7.1. Optimizing Pin Placements for Signal Integrity
1.7.2. Specifying Board Trace Model Settings
1.7.3. Defining PCB Layers and PCB Layer Thickness
1.7.4. Specifying Signal Breakout Layers
1.7.5. Creating I/O Assignments
1.7.6. Decreasing Pessimism in SSN Analysis
1.7.7. Excluding Pins as Aggressor Signals
2.1. Signal Integrity Analysis with Third-Party Tools
2.2. I/O Model Selection: IBIS or HSPICE
2.3. FPGA to Board Signal Integrity Analysis Flow
2.4. Simulation with IBIS Models
2.5. Simulation with HSPICE Models
1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History
2.4.1. Elements of an IBIS Model
2.4.2. Creating Accurate IBIS Models
2.4.3. Design Simulation Using the Mentor Graphics* HyperLynx* Software
2.4.4. Configuring LineSim to Use Intel IBIS Models
2.4.5. Integrating Intel IBIS Models into LineSim Simulations
2.4.6. Running and Interpreting LineSim Simulations
2.5.1. Supported Devices and Signaling
2.5.2. Accessing HSPICE Simulation Kits
2.5.3. The Double Counting Problem in HSPICE Simulations
2.5.4. HSPICE Writer Tool Flow
2.5.5. Running an HSPICE Simulation
2.5.6. Interpreting the Results of an Output Simulation
2.5.7. Interpreting the Results of an Input Simulation
2.5.8. Viewing and Interpreting Tabular Simulation Results
2.5.9. Viewing Graphical Simulation Results
2.5.10. Making Design Adjustments Based on HSPICE Simulations
2.5.11. Sample Input for I/O HSPICE Simulation Deck
2.5.12. Sample Output for I/O HSPICE Simulation Deck
2.5.13. Advanced Topics
2.5.4.1. Applying I/O Assignments
2.5.4.2. Enabling HSPICE Writer
2.5.4.3. Enabling HSPICE Writer Using Assignments
2.5.4.4. Naming Conventions for HSPICE Files
2.5.4.5. Invoking HSPICE Writer
2.5.4.6. Invoking HSPICE Writer from the Command Line
2.5.4.7. Customizing Automatically Generated HSPICE Decks
2.5.12.1. Header Comment
2.5.12.2. Simulation Conditions
2.5.12.3. Simulation Options
2.5.12.4. Constant Definition
2.5.12.5. I/O Buffer Netlist
2.5.12.6. Drive Strength
2.5.12.7. Slew Rate and Delay Chain
2.5.12.8. I/O Buffer Instantiation
2.5.12.9. Board and Trace Termination
2.5.12.10. Double-Counting Compensation Circuitry
2.5.12.11. Simulation Analysis
3.1. FPGA-to-PCB Design Flow
3.2. Integrating with I/O Designer
3.3. Integrating with DxDesigner
3.4. Analyzing FPGA Simultaneous Switching Noise (SSN)
3.5. Scripting API
1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History
3.2.1. Generating Pin Assignment Files
3.2.2. I/O Designer Settings
3.2.3. Transferring I/O Assignments
3.2.4. Updating I/O Designer with Intel® Quartus® Prime Pin Assignments
3.2.5. Updating Intel® Quartus® Prime with I/O Designer Pin Assignments
3.2.6. Generating Schematic Symbols in I/O Designer
3.2.7. Exporting Schematic Symbols to DxDesigner
4.1. Cadence PCB Design Tools Support
4.2. Product Comparison
4.3. FPGA-to-PCB Design Flow
4.4. Setting Up the Intel® Quartus® Prime Software
4.5. FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
4.6. FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History
5.1. Reviewing Intel® Quartus® Prime Software Settings
5.2. Reviewing Device Pin-Out Information in the Fitter Report
5.3. Reviewing Compilation Error and Warning Messages
5.4. Using Additional Intel® Quartus® Prime Software Features
5.5. Using Additional Intel® Quartus® Prime Software Tools
1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History
Visible to Intel only — GUID: mwh1410471145780
Ixiasoft
3.2. Integrating with I/O Designer
You can integrate the Mentor Graphics* I/O Designer software into the Intel® Quartus® Prime design flow. Pin and signal assignment changes can be made anywhere in the design flow with either the Intel® Quartus® Prime Pin Planner or the I/O Designer software. The I/O Designer software facilitates moving these changes, as well as synthesis, placement, and routing changes, between the Intel® Quartus® Prime software, an external synthesis tool (if used), and a schematic capture tool such as the DxDesigner software.
This section describes how to use the I/O Designer software to transfer pin and signal assignment information to and from the Intel® Quartus® Prime software with an .fx, and how to create symbols for the DxDesigner software.
Figure 29. I/O Designer Design Flow
Note: (2) DxDesigner software-specific steps in the design flow are not part of the I/O Designer flow.
Section Content
Generating Pin Assignment Files
I/O Designer Settings
Transferring I/O Assignments
Updating I/O Designer with Intel Quartus Prime Pin Assignments
Updating Intel Quartus Prime with I/O Designer Pin Assignments
Generating Schematic Symbols in I/O Designer
Exporting Schematic Symbols to DxDesigner