Visible to Intel only — GUID: mwh1410471137666
Ixiasoft
1. Simultaneous Switching Noise (SSN) Analysis and Optimizations
2. Signal Integrity Analysis with Third-Party Tools
3. Mentor Graphics* PCB Design Tools Support
4. Cadence PCB Design Tools Support
5. Reviewing Printed Circuit Board Schematics with the Intel® Quartus® Prime Software
A. Intel® Quartus® Prime Standard Edition User Guides
1.1. Simultaneous Switching Noise (SSN) Analysis and Optimizations
1.2. Definitions
1.3. Understanding SSN
1.4. SSN Estimation Tools
1.5. SSN Analysis Overview
1.6. Design Factors Affecting SSN Results
1.7. Optimizing Your Design for SSN Analysis
1.8. Performing SSN Analysis and Viewing Results
1.9. Decreasing Processing Time for SSN Analysis
1.10. Scripting Support
1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History
1.7.1. Optimizing Pin Placements for Signal Integrity
1.7.2. Specifying Board Trace Model Settings
1.7.3. Defining PCB Layers and PCB Layer Thickness
1.7.4. Specifying Signal Breakout Layers
1.7.5. Creating I/O Assignments
1.7.6. Decreasing Pessimism in SSN Analysis
1.7.7. Excluding Pins as Aggressor Signals
2.1. Signal Integrity Analysis with Third-Party Tools
2.2. I/O Model Selection: IBIS or HSPICE
2.3. FPGA to Board Signal Integrity Analysis Flow
2.4. Simulation with IBIS Models
2.5. Simulation with HSPICE Models
1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History
2.4.1. Elements of an IBIS Model
2.4.2. Creating Accurate IBIS Models
2.4.3. Design Simulation Using the Mentor Graphics* HyperLynx* Software
2.4.4. Configuring LineSim to Use Intel IBIS Models
2.4.5. Integrating Intel IBIS Models into LineSim Simulations
2.4.6. Running and Interpreting LineSim Simulations
2.5.1. Supported Devices and Signaling
2.5.2. Accessing HSPICE Simulation Kits
2.5.3. The Double Counting Problem in HSPICE Simulations
2.5.4. HSPICE Writer Tool Flow
2.5.5. Running an HSPICE Simulation
2.5.6. Interpreting the Results of an Output Simulation
2.5.7. Interpreting the Results of an Input Simulation
2.5.8. Viewing and Interpreting Tabular Simulation Results
2.5.9. Viewing Graphical Simulation Results
2.5.10. Making Design Adjustments Based on HSPICE Simulations
2.5.11. Sample Input for I/O HSPICE Simulation Deck
2.5.12. Sample Output for I/O HSPICE Simulation Deck
2.5.13. Advanced Topics
2.5.4.1. Applying I/O Assignments
2.5.4.2. Enabling HSPICE Writer
2.5.4.3. Enabling HSPICE Writer Using Assignments
2.5.4.4. Naming Conventions for HSPICE Files
2.5.4.5. Invoking HSPICE Writer
2.5.4.6. Invoking HSPICE Writer from the Command Line
2.5.4.7. Customizing Automatically Generated HSPICE Decks
2.5.12.1. Header Comment
2.5.12.2. Simulation Conditions
2.5.12.3. Simulation Options
2.5.12.4. Constant Definition
2.5.12.5. I/O Buffer Netlist
2.5.12.6. Drive Strength
2.5.12.7. Slew Rate and Delay Chain
2.5.12.8. I/O Buffer Instantiation
2.5.12.9. Board and Trace Termination
2.5.12.10. Double-Counting Compensation Circuitry
2.5.12.11. Simulation Analysis
Simulation Analysis Block
3.1. FPGA-to-PCB Design Flow
3.2. Integrating with I/O Designer
3.3. Integrating with DxDesigner
3.4. Analyzing FPGA Simultaneous Switching Noise (SSN)
3.5. Scripting API
1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History
3.2.1. Generating Pin Assignment Files
3.2.2. I/O Designer Settings
3.2.3. Transferring I/O Assignments
3.2.4. Updating I/O Designer with Intel® Quartus® Prime Pin Assignments
3.2.5. Updating Intel® Quartus® Prime with I/O Designer Pin Assignments
3.2.6. Generating Schematic Symbols in I/O Designer
3.2.7. Exporting Schematic Symbols to DxDesigner
4.1. Cadence PCB Design Tools Support
4.2. Product Comparison
4.3. FPGA-to-PCB Design Flow
4.4. Setting Up the Intel® Quartus® Prime Software
4.5. FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
4.6. FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History
5.1. Reviewing Intel® Quartus® Prime Software Settings
5.2. Reviewing Device Pin-Out Information in the Fitter Report
5.3. Reviewing Compilation Error and Warning Messages
5.4. Using Additional Intel® Quartus® Prime Software Features
5.5. Using Additional Intel® Quartus® Prime Software Tools
1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History
Visible to Intel only — GUID: mwh1410471137666
Ixiasoft
2.5.12.11. Simulation Analysis
The simulation analysis block is set up to measure double-counting corrected delays. This is accomplished by measuring the uncompensated delay of the I/O buffer when connected to the user load, and when subtracting the simulated amount of double-counting from the test load I/O buffer.
Simulation Analysis Block
* Simulation Analysis Setup
*Print out the voltage waveform at both the pin and far end load
.print tran v(pin) v(load)
.tran 0.020ns 17ns
* Measure the propagation delay to the load pin. This value
* includes some double counting with
Intel®
Quartus® Prime’s Tco
.measure TRAN tpd_uncomp_rise TRIG v(din) val=’vc*0.5’ rise=1+ TARG v(load) val=’vcn*0.5’ rise=1
.measure TRAN tpd_uncomp_fall TRIG v(din) val=’vc*0.5’ fall=1
+ TARG v(load) val=’vcn*0.5’ fall=1
* The test load buffer can calculate the amount of double counting
.measure TRAN t_dblcnt_rise TRIG v(din) val=’vc*0.5’ rise=1
+ TARG v(pin_tl) val=’vcn_tl*0.5’ rise=1
.measure TRAN t_dblcnt_fall TRIG v(din) val=’vc*0.5’ fall=1
+ TARG v(pin_tl) val=’vcn_tl*0.5’ fall=1
* Calculate the true propagation delay by subtraction
.measure TRAN tpd_rise PARAM=’tpd_uncomp_rise-t_dblcnt_rise’
.measure TRAN tpd_fall PARAM=’tpd_uncomp_fall-t_dblcnt_fall’