Visible to Intel only — GUID: mwh1410471138602
Ixiasoft
1. Simultaneous Switching Noise (SSN) Analysis and Optimizations
2. Signal Integrity Analysis with Third-Party Tools
3. Mentor Graphics* PCB Design Tools Support
4. Cadence PCB Design Tools Support
5. Reviewing Printed Circuit Board Schematics with the Intel® Quartus® Prime Software
A. Intel® Quartus® Prime Standard Edition User Guides
1.1. Simultaneous Switching Noise (SSN) Analysis and Optimizations
1.2. Definitions
1.3. Understanding SSN
1.4. SSN Estimation Tools
1.5. SSN Analysis Overview
1.6. Design Factors Affecting SSN Results
1.7. Optimizing Your Design for SSN Analysis
1.8. Performing SSN Analysis and Viewing Results
1.9. Decreasing Processing Time for SSN Analysis
1.10. Scripting Support
1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History
1.7.1. Optimizing Pin Placements for Signal Integrity
1.7.2. Specifying Board Trace Model Settings
1.7.3. Defining PCB Layers and PCB Layer Thickness
1.7.4. Specifying Signal Breakout Layers
1.7.5. Creating I/O Assignments
1.7.6. Decreasing Pessimism in SSN Analysis
1.7.7. Excluding Pins as Aggressor Signals
2.1. Signal Integrity Analysis with Third-Party Tools
2.2. I/O Model Selection: IBIS or HSPICE
2.3. FPGA to Board Signal Integrity Analysis Flow
2.4. Simulation with IBIS Models
2.5. Simulation with HSPICE Models
1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History
2.4.1. Elements of an IBIS Model
2.4.2. Creating Accurate IBIS Models
2.4.3. Design Simulation Using the Mentor Graphics* HyperLynx* Software
2.4.4. Configuring LineSim to Use Intel IBIS Models
2.4.5. Integrating Intel IBIS Models into LineSim Simulations
2.4.6. Running and Interpreting LineSim Simulations
2.5.1. Supported Devices and Signaling
2.5.2. Accessing HSPICE Simulation Kits
2.5.3. The Double Counting Problem in HSPICE Simulations
2.5.4. HSPICE Writer Tool Flow
2.5.5. Running an HSPICE Simulation
2.5.6. Interpreting the Results of an Output Simulation
2.5.7. Interpreting the Results of an Input Simulation
2.5.8. Viewing and Interpreting Tabular Simulation Results
2.5.9. Viewing Graphical Simulation Results
2.5.10. Making Design Adjustments Based on HSPICE Simulations
2.5.11. Sample Input for I/O HSPICE Simulation Deck
2.5.12. Sample Output for I/O HSPICE Simulation Deck
2.5.13. Advanced Topics
2.5.4.1. Applying I/O Assignments
2.5.4.2. Enabling HSPICE Writer
2.5.4.3. Enabling HSPICE Writer Using Assignments
2.5.4.4. Naming Conventions for HSPICE Files
2.5.4.5. Invoking HSPICE Writer
2.5.4.6. Invoking HSPICE Writer from the Command Line
2.5.4.7. Customizing Automatically Generated HSPICE Decks
2.5.12.1. Header Comment
2.5.12.2. Simulation Conditions
2.5.12.3. Simulation Options
2.5.12.4. Constant Definition
2.5.12.5. I/O Buffer Netlist
2.5.12.6. Drive Strength
2.5.12.7. Slew Rate and Delay Chain
2.5.12.8. I/O Buffer Instantiation
2.5.12.9. Board and Trace Termination
2.5.12.10. Double-Counting Compensation Circuitry
2.5.12.11. Simulation Analysis
3.1. FPGA-to-PCB Design Flow
3.2. Integrating with I/O Designer
3.3. Integrating with DxDesigner
3.4. Analyzing FPGA Simultaneous Switching Noise (SSN)
3.5. Scripting API
1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History
3.2.1. Generating Pin Assignment Files
3.2.2. I/O Designer Settings
3.2.3. Transferring I/O Assignments
3.2.4. Updating I/O Designer with Intel® Quartus® Prime Pin Assignments
3.2.5. Updating Intel® Quartus® Prime with I/O Designer Pin Assignments
3.2.6. Generating Schematic Symbols in I/O Designer
3.2.7. Exporting Schematic Symbols to DxDesigner
4.1. Cadence PCB Design Tools Support
4.2. Product Comparison
4.3. FPGA-to-PCB Design Flow
4.4. Setting Up the Intel® Quartus® Prime Software
4.5. FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
4.6. FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History
5.1. Reviewing Intel® Quartus® Prime Software Settings
5.2. Reviewing Device Pin-Out Information in the Fitter Report
5.3. Reviewing Compilation Error and Warning Messages
5.4. Using Additional Intel® Quartus® Prime Software Features
5.5. Using Additional Intel® Quartus® Prime Software Tools
1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History1.112.63.64.75.6. Document Revision History
Visible to Intel only — GUID: mwh1410471138602
Ixiasoft
2.5.13.1. PVT Simulations
The automatically generated HSPICE simulation files are set up to simulate the slow process corner using low voltage, high temperature, and slow transistors. To ensure a fully robust link, Intel recommends that you run simulations over all process corners.
To perform process, voltage, and temperature (PVT) simulations, manually modify the spice decks in a two step process:
- Remove the double-counting compensation circuitry from the simulation file. This is required as the amount of double-counting is dependant upon how the Intel® Quartus® Prime software calculates delays and is not based on which PVT corner is being simulated. By default, the Intel® Quartus® Prime software provides timing numbers using the slow process corner.
- Select the proper corner for the PVT simulation by setting the correct HSPICE temperature, changing the supply voltage sources, and loading the correct transistor models.
A more detailed description of HSPICE process corners can be found in the family-specific HSPICE model documentation.
Related Information