Intel® FPGA SDK for OpenCL™ Pro Edition: Best Practices Guide

ID 683521
Date 9/26/2022
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

6.1.4. Relaxing Loop-Carried Dependency by Inferring Shift Registers

To enable the Intel® FPGA SDK for OpenCL™ Offline Compiler to handle single work-item kernels that carry out double precision floating-point operations efficiently, remove loop-carried dependencies by inferring a shift register.

Consider the following kernel:

 1 __kernel void double_add_1 (__global double *arr,
 2                             int N,
 3                             __global double *result)
 4 {
 5   double temp_sum = 0;
 6
 7   for (int i = 0; i < N; ++i)
 8   {
 9       temp_sum += arr[i];
10   }
11 
12   *result = temp_sum;
13 }

The optimization report for kernel unoptimized resembles the following:

The kernel unoptimized is an accumulator that sums the elements of a double precision floating-point array arr[i]. For each loop iteration, the offline compiler takes 11 cycles to compute the result of the addition and then stores it in the variable temp_sum. Each loop iteration requires the value of temp_sum from the previous loop iteration, which creates a data dependency on temp_sum.

To relax the data dependency, infer the array arr[i] as a shift register.

Below is the restructured kernel optimized:

 1 //Shift register size must be statically determinable
 2 #define II_CYCLES 12
 3
 4 __kernel void double_add_2 (__global double *arr,
 5                             int N,
 6                             __global double *result)
 7 {
 8     //Create shift register with II_CYCLE+1 elements
 9     double shift_reg[II_CYCLES+1];
10	
11     //Initialize all elements of the register to 0
12     for (int i = 0; i < II_CYCLES + 1; i++)
13     {
14         shift_reg[i] = 0;
15     }
16    
17     //Iterate through every element of input array
18     for(int i = 0; i < N; ++i)
19     {
20         //Load ith element into end of shift register
21         //if N > II_CYCLE, add to shift_reg[0] to preserve values
22         shift_reg[II_CYCLES] = shift_reg[0] + arr[i];
23 
24         #pragma unroll
25         //Shift every element of shift register
26         for(int j = 0; j < II_CYCLES; ++j)
27         {
28             shift_reg[j] = shift_reg[j + 1];
29         }
30     }
31 
32     //Sum every element of shift register
33     double temp_sum = 0;
34 	
35     #pragma unroll 
36     for(int i = 0; i < II_CYCLES; ++i)
37     {
38         temp_sum += shift_reg[i];
39     }
40
41     *result = temp_sum;
42 }

The following optimization report indicates that the inference of the shift register shift_reg[II_CYCLES] successfully removes the data dependency on the variable temp_sum: