Visible to Intel only — GUID: uco1552184854786
Ixiasoft
1. Intel® HLS Compiler Pro Edition Reference Manual
2. Compiler
3. C Language and Library Support
4. Component Interfaces
5. Component Memories (Memory Attributes)
6. Loops in Components
7. Component Concurrency
8. Arbitrary Precision Math Support
9. Component Target Frequency
10. Systems of Tasks
11. Libraries
12. Advanced Hardware Synthesis Controls
13. Intel® High Level Synthesis Compiler Pro Edition Reference Summary
A. Advanced Math Source Code Libraries
B. Supported Math Functions
C. Cyclone® V Restrictions
D. Intel® HLS Compiler Pro Edition Reference Manual Archives
E. Document Revision History of the Intel® HLS Compiler Pro Edition Reference Manual
6.1. Loop Initiation Interval (ii Pragma)
6.2. Loop-Carried Dependencies (ivdep Pragma)
6.3. Loop Coalescing (loop_coalesce Pragma)
6.4. Loop Unrolling (unroll Pragma)
6.5. Loop Concurrency (max_concurrency Pragma)
6.6. Loop Iteration Speculation (speculated_iterations Pragma)
6.7. Loop Pipelining Control (disable_loop_pipelining Pragma)
6.8. Loop Interleaving Control (max_interleaving Pragma)
6.9. Loop Fusion
11.4.1.1. Integration of an RTL Module into the HLS Pipeline
11.4.1.2. RTL Module Interfaces
11.4.1.3. RTL Reset and Clock Signals
11.4.1.4. Object Manifest File Syntax
11.4.1.5. Mapping HLS Data Types to RTL Signals
11.4.1.6. HLS Emulation Models for RTL-Based Functions
11.4.1.7. Potential Incompatibility between RTL Modules and Partial Reconfiguration
11.4.1.8. Stall-Free RTL
11.4.1.9. RTL Module Restrictions and Limitations for HLS Libraries
13.1. Intel® HLS Compiler Pro Edition i++ Command-Line Arguments
13.2. Intel® HLS Compiler Pro Edition Header Files
13.3. Intel® HLS Compiler Pro Edition Compiler-Defined Preprocessor Macros
13.4. Intel® HLS Compiler Pro Edition Keywords
13.5. Intel® HLS Compiler Pro Edition Simulation API (Testbench Only)
13.6. Intel® HLS Compiler Pro Edition Component Memory Attributes
13.7. Intel® HLS Compiler Pro Edition Loop Pragmas
13.8. Intel® HLS Compiler Pro Edition Scope Pragmas
13.9. Intel® HLS Compiler Pro Edition Component Attributes
13.10. Intel® HLS Compiler Pro Edition Component Default Interfaces
13.11. Intel® HLS Compiler Pro Edition Component Invocation Interface Control Attributes
13.12. Intel® HLS Compiler Pro Edition Component Macros
13.13. Intel® HLS Compiler Pro Edition Systems of Tasks API
13.14. Intel® HLS Compiler Pro Edition Pipes API
13.15. Intel® HLS Compiler Pro Edition Streaming Input Interfaces
13.16. Intel® HLS Compiler Pro Edition Streaming Output Interfaces
13.17. Intel® HLS Compiler Pro Edition Memory-Mapped Interfaces
13.18. Intel® HLS Compiler Pro Edition Load-Store Unit Control
13.19. Intel® HLS Compiler Pro Edition Arbitrary Precision Data Types
B.1. Math Functions Provided by the math.h Header File
B.2. Math Functions Provided by the extendedmath.h Header File
B.3. Math Functions Provided by the ac_fixed_math.h Header File
B.4. Math Functions Provided by the hls_float.h Header File
B.5. Math Functions Provided by the hls_float_math.h Header File
B.6. Default Rounding Schemes and Subnormal Number Support
Visible to Intel only — GUID: uco1552184854786
Ixiasoft
11.4.1.3.1. Intel Agilex® 7 and Intel® Stratix® 10 Design-Specific Reset Requirements for Stall-Free and Stallable RTL Modules
When you create an RTL module for Intel Agilex® 7 and Intel® Stratix® 10 HLS designs, ensure that the module satisfies specific logic reset requirements.
Reset Requirements for Stall-Free RTL Modules
A stall-free RTL module is a fixed-latency module for which the Intel® HLS Compiler can optimize away stall logic.
- When creating a stall-free RTL module for an Intel Agilex® 7 and Intel® Stratix® 10 design, use synchronous clear signals only.
- After deassertion of the reset signal to the stall-free RTL module, the module must be operational within 15 clock cycles. If the reset signal is pipelined within the module, this requirement limits the reset pipelining to no more than 15 stages.
Reset Requirements for Stallable RTL Modules
A stallable RTL module has a variable latency, and it relies on backpressured input and output interfaces to function correctly.
- When creating a stallable RTL module for an Intel Agilex® 7 and Intel® Stratix® 10 design, use synchronous clear signals only.
- After assertion of the reset signal to the stallable RTL module, the module must deassert its oready and ovalid interface signals within 40 clock cycles.
- After deassertion of the reset signal to the stallable RTL module, the module must be fully operational within 40 clock cycles. The module signals its readiness by asserting the oready interface signal.