Visible to Intel only — GUID: nik1410564988505
Ixiasoft
1. Datasheet
2. Getting Started with the Arria® V GZ Hard IP for PCI Express
3. Getting Started with the Configuration Space Bypass Mode Qsys Example Design
4. Parameter Settings
5. Interfaces and Signal Descriptions
6. Registers
7. Interrupts
8. Error Handling
9. PCI Express Protocol Stack
10. Transaction Layer Protocol (TLP) Details
11. Throughput Optimization
12. Design Implementation
13. Additional Features
14. Hard IP Reconfiguration
15. Transceiver PHY IP Reconfiguration
16. Testbench and Design Example
17. Debugging
A. Lane Initialization and Reversal
B. Document Revision History
1.1. Arria® V GZ Avalon-ST Interface for PCIe Datasheet
1.2. Release Information
1.3. Device Family Support
1.4. Configurations
1.5. Avalon-ST Example Designs
1.6. Debug Features
1.7. IP Core Verification
1.8. Resource Utilization
1.9. Recommended Speed Grades
1.10. Creating a Design for PCI Express
2.1.1. Generating the Testbench
2.1.2. Simulating the Example Design
2.1.3. Generating Synthesis Files
2.1.4. Understanding the Files Generated
2.1.5. Understanding Simulation Log File Generation
2.1.6. Understanding Physical Placement of the PCIe IP Core
2.1.7. Compiling the Design in the Qsys Design Flow
2.1.8. Modifying the Example Design
2.1.9. Using the IP Catalog To Generate Your Arria® V GZ Hard IP for PCI Express as a Separate Component
3.3.1. Timing for Configuration Read to Function 0 for the 256-Bit Avalon-ST Interface
3.3.2. Timing for Configuration Write to Function 0 for the 256-Bit Avalon-ST Interface
3.3.3. Timing for Memory Write and Read of Function 1 256-Bit Avalon-ST Interface
3.3.4. Partial Transcript for Configuration Space Bypass Simulation
5.1. Clock Signals
5.2. Reset, Status, and Link Training Signals
5.3. ECRC Forwarding
5.4. Error Signals
5.5. Interrupts for Endpoints
5.6. Interrupts for Root Ports
5.7. Completion Side Band Signals
5.8. Configuration Space Bypass Mode Interface Signals
5.9. Parity Signals
5.10. LMI Signals
5.11. Transaction Layer Configuration Space Signals
5.12. Hard IP Reconfiguration Interface
5.13. Power Management Signals
5.14. Physical Layer Interface Signals
6.1. Correspondence between Configuration Space Registers and the PCIe Specification
6.2. Type 0 Configuration Space Registers
6.3. Type 1 Configuration Space Registers
6.4. PCI Express Capability Structures
6.5. Intel-Defined VSEC Registers
6.6. CvP Registers
6.7. Uncorrectable Internal Error Mask Register
6.8. Uncorrectable Internal Error Status Register
6.9. Correctable Internal Error Mask Register
6.10. Correctable Internal Error Status Register
16.6.1. ebfm_barwr Procedure
16.6.2. ebfm_barwr_imm Procedure
16.6.3. ebfm_barrd_wait Procedure
16.6.4. ebfm_barrd_nowt Procedure
16.6.5. ebfm_cfgwr_imm_wait Procedure
16.6.6. ebfm_cfgwr_imm_nowt Procedure
16.6.7. ebfm_cfgrd_wait Procedure
16.6.8. ebfm_cfgrd_nowt Procedure
16.6.9. BFM Configuration Procedures
16.6.10. BFM Shared Memory Access Procedures
16.6.11. BFM Log and Message Procedures
16.6.12. Verilog HDL Formatting Functions
16.7.1. Changing Between Serial and PIPE Simulation
16.7.2. Using the PIPE Interface for Gen1 and Gen2 Variants
16.7.3. Viewing the Important PIPE Interface Signals
16.7.4. Disabling the Scrambler for Gen1 and Gen2 Simulations
16.7.5. Disabling 8B/10B Encoding and Decoding for Gen1 and Gen2 Simulations
16.7.6. Changing between the Hard and Soft Reset Controller
Visible to Intel only — GUID: nik1410564988505
Ixiasoft
12.1. Making Analog QSF Assignments Using the Assignment Editor
You specify the analog parameters using the Quartus® Prime Assignment Editor, the Pin Planner, or through the Quartus® Prime Settings File .(qsf).
Data Rate | PLL Type | VCCR_GXB and VCCT_GXB | VCCA_GXB |
---|---|---|---|
Gen1 or Gen2—DFE, AEQ and EyeQ not used | ATX | 1.0 V | 3.0 V |
Gen1 or Gen2—DFE, AEQ and EyeQ not used | CMU | 0.85 V | 2.5 V |
Gen1 or Gen2 | CMU | 0.90 V | 2.5 V |
Gen3 | ATX | 1.0 V | 3.0 V |
Gen3 | CMU | 1.0 V | 3.0 V |
The Quartus® Prime software provides default values for analog parameters. You can change the defaults using the Assignment Editor or the Pin Planner. You can also edit your .qsf directly or by typing commands in the Quartus® Prime Tcl Console.
The following example shows how to change the value of the voltages required:
- On the Assignments menu, select Assignment Editor. The Assignment Editor appears.
- Complete the following steps for each pin requiring the VCCR_GXB and V CCT_GXB voltage:
- Double-click in the Assignment Name column and scroll to the bottom of the available assignments.
- Select VCCR_GXB/VCCT_GXB Voltage.
- In the Value column, select 1_0V from the list.
- Complete the following steps for each pin requiring the VCCA_GXB voltage:
- Double-click in the Assignment Name column and scroll to the bottom of the available assignments.
- Select VCCA_GXB Voltage.
- In the Value column, select 3_0V from the list.
The Quartus® Prime software adds these instance assignments commands to the .qsf file for your project.
You can also enter these commands at the Quartus® Prime Tcl Console. For example, the following command sets the XCVR_VCCR_VCCT_VOLTAGE to 1.0 V for the pin specified:
set_instance_assignment -name XCVR_VCCR_VCCT_VOLTAGE 1_0V to “pin”
Related Information