Visible to Intel only — GUID: mwh1391807009713
Ixiasoft
1. Design Optimization Overview
2. Optimizing the Design Netlist
3. Timing Closure and Optimization
4. Area Optimization
5. Analyzing and Optimizing the Design Floorplan
6. Netlist Optimizations and Physical Synthesis
7. Engineering Change Orders with the Chip Planner
A. Intel® Quartus® Prime Standard Edition User Guides
2.1. When to Use the Netlist Viewers: Analyzing Design Problems
2.2. Intel® Quartus® Prime Design Flow with the Netlist Viewers
2.3. RTL Viewer Overview
2.4. State Machine Viewer Overview
2.5. Technology Map Viewer Overview
2.6. Netlist Viewer User Interface
2.7. Schematic View
2.8. State Machine Viewer
2.9. Cross-Probing to a Source Design File and Other Intel® Quartus® Prime Windows
2.10. Cross-Probing to the Netlist Viewers from Other Intel® Quartus® Prime Windows
2.11. Viewing a Timing Path
2.12. Optimizing the Design Netlist Revision History
2.7.1. Display Schematics in Multiple Tabbed View
2.7.2. Schematic Symbols
2.7.3. Select Items in the Schematic View
2.7.4. Shortcut Menu Commands in the Schematic View
2.7.5. Filtering in the Schematic View
2.7.6. View Contents of Nodes in the Schematic View
2.7.7. Moving Nodes in the Schematic View
2.7.8. View LUT Representations in the Technology Map Viewer
2.7.9. Zoom Controls
2.7.10. Navigating with the Bird's Eye View
2.7.11. Partition the Schematic into Pages
2.7.12. Follow Nets Across Schematic Pages
3.1. Optimize Multi Corner Timing
3.2. Critical Paths
3.3. Design Evaluation for Timing Closure
3.4. Design Analysis
3.5. Timing Optimization
3.6. Periphery to Core Register Placement and Routing Optimization
3.77.7. Scripting Support3.77.7. Scripting Support
3.8. Timing Closure and Optimization Revision History
3.4.3.1. Displaying Path Reports with the Timing Analyzer
3.4.3.2. Tips for Analyzing Failing Paths
3.4.3.3. Tips for Analyzing Failing Clock Paths that Cross Clock Domains
3.4.3.4. Tips for Analyzing Paths from/to the Source and Destination of Critical Path
3.4.3.5. Tips for Creating a .tcl Script to Monitor Critical Paths Across Compiles
3.4.3.6. Global Routing Resources
3.5.1. Displaying Timing Closure Recommendations for Failing Paths
3.5.2. Timing Optimization Advisor
3.5.3. Optional Fitter Settings
3.5.4. I/O Timing Optimization Techniques
3.5.5. Register-to-Register Timing Optimization Techniques
3.5.6. Logic Lock (Standard) Assignments
3.5.7. Location Assignments
3.5.8. Metastability Analysis and Optimization Techniques
3.5.4.1. Optimize IOC Register Placement for Timing Logic Option
3.5.4.2. Fast Input, Output, and Output Enable Registers
3.5.4.3. Programmable Delays
3.5.4.4. Use PLLs to Shift Clock Edges
3.5.4.5. Use Fast Regional Clock Networks and Regional Clocks Networks
3.5.4.6. Spine Clock Limitations
3.5.4.7. Change How Hold Times are Optimized for Devices
3.5.5.1. Optimize Source Code
3.5.5.2. Improving Register-to-Register Timing
3.5.5.3. Physical Synthesis Optimizations
3.5.5.4. Turn Off Extra-Effort Power Optimization Settings
3.5.5.5. Optimize Synthesis for Speed, Not Area
3.5.5.6. Flatten the Hierarchy During Synthesis
3.5.5.7. Set the Synthesis Effort to High
3.5.5.8. Change State Machine Encoding
3.5.5.9. Duplicate Logic for Fan-Out Control
3.5.5.10. Prevent Shift Register Inference
3.5.5.11. Use Other Synthesis Options Available in Your Synthesis Tool
3.5.5.12. Fitter Seed
3.5.5.13. Set Maximum Router Timing Optimization Level
4.2.4.1. Guideline: Optimize Source Code
4.2.4.2. Guideline: Optimize Synthesis for Area, Not Speed
4.2.4.3. Guideline: Restructure Multiplexers
4.2.4.4. Guideline: Perform WYSIWYG Primitive Resynthesis with Balanced or Area Setting
4.2.4.5. Guideline: Use Register Packing
4.2.4.6. Guideline: Remove Fitter Constraints
4.2.4.7. Guideline: Flatten the Hierarchy During Synthesis
4.2.4.8. Guideline: Re-target Memory Blocks
4.2.4.9. Guideline: Use Physical Synthesis Options to Reduce Area
4.2.4.10. Guideline: Retarget or Balance DSP Blocks
4.2.4.11. Guideline: Use a Larger Device
4.2.5.1. Guideline: Set Auto Packed Registers to Sparse or Sparse Auto
4.2.5.2. Guideline: Set Fitter Aggressive Routability Optimizations to Always
4.2.5.3. Guideline: Increase Router Effort Multiplier
4.2.5.4. Guideline: Remove Fitter Constraints
4.2.5.5. Guideline: Optimize Synthesis for Area, Not Speed
4.2.5.6. Guideline: Optimize Source Code
4.2.5.7. Guideline: Use a Larger Device
5.1.1. Starting the Chip Planner
5.1.2. Chip Planner GUI Components
5.1.3. Viewing Architecture-Specific Design Information
5.1.4. Viewing Available Clock Networks in the Device
5.1.5. Viewing Routing Congestion
5.1.6. Viewing I/O Banks
5.1.7. Viewing High-Speed Serial Interfaces (HSSI)
5.1.8. Viewing the Source and Destination of Placed Nodes
5.1.9. Viewing Fan-In and Fan-Out Connections of Placed Resources
5.1.10. Generating Immediate Fan-In and Fan-Out Connections
5.1.11. Exploring Paths in the Chip Planner
5.1.12. Viewing Assignments in the Chip Planner
5.1.13. Viewing High-Speed and Low-Power Tiles in the Chip Planner
5.1.14. Viewing Design Partition Placement
5.2.1. Attributes of a Logic Lock (Standard) Region
5.2.2. Creating Logic Lock (Standard) Regions
5.2.3. Customizing the Shape of Logic Lock Regions
5.2.4. Placing Logic Lock (Standard) Regions
5.2.5. Placing Device Resources into Logic Lock (Standard) Regions
5.2.6. Hierarchical (Parent and Child) Logic Lock (Standard) Regions
5.2.7. Additional Intel® Quartus® Prime Logic Lock (Standard) Design Features
5.2.8. Logic Lock (Standard) Regions Window
5.2.2.1. Creating Logic Lock (Standard) Regions with the Chip Planner
5.2.2.2. Creating Logic Lock (Standard) Regions with the Project Navigator
5.2.2.3. Creating Logic Lock (Standard) Regions with the Logic Lock (Standard) Regions Window
5.2.2.4. Defining Routing Regions
5.2.2.5. Noncontiguous Logic Lock (Standard) Regions
5.2.2.6. Considerations on Using Auto Sized Regions
5.4.1. Initializing and Uninitializing a Logic Lock (Standard) Region
5.4.2. Creating or Modifying Logic Lock (Standard) Regions
5.4.3. Obtaining Logic Lock (Standard) Region Properties
5.4.4. Assigning Logic Lock (Standard) Region Content
5.4.5. Save a Node-Level Netlist for the Entire Design into a Persistent Source File
5.4.6. Setting Logic Lock (Standard) Assignment Priority
5.4.7. Assigning Virtual Pins with a Tcl command
7.1. Engineering Change Orders
7.2. ECO Design Flow
7.3. The Chip Planner Overview
7.4. Performing ECOs with the Chip Planner (Floorplan View)
7.5. Performing ECOs in the Resource Property Editor
7.6. Change Manager
3.77.7. Scripting Support3.77.7. Scripting Support
7.8. Common ECO Applications
7.9. Post ECO Steps
7.10. Engineering Change Orders with the Chip Planner Revision History
Visible to Intel only — GUID: mwh1391807009713
Ixiasoft
3.4.3.3. Tips for Analyzing Failing Clock Paths that Cross Clock Domains
When analyzing clock path failures:
- Check whether these paths cross two clock domains.
In paths that cross two clock domains, the From Clock and To Clock in the timing analysis report are different.Figure 27. Different Value in From Clock and To Clock Field
- Check if the design contains paths that involve a different clock in the middle of the path, even if the source and destination register clock are the same.
- Check whether failing paths between these clock domains need to be analyzed synchronously.
Set failing paths that are not to be analyzed synchronously as false paths.
- When you run report_timing on a design, the report shows the launch clock and latch clock for each failing path. Check whether the relationship between the launch clock and latch clock is realistic and what you expect from your knowledge of the design
For example, the path can start at a rising edge and end at a falling edge, which reduces the setup relationship by one half clock cycle.
- Review the clock skew that appears in the Timing Report:
A large skew may indicate a problem in the design, such as a gated clock, or a problem in the physical layout (for example, a clock using local routing instead of dedicated clock routing). When you have made sure the paths are analyzed synchronously and that there is no large skew on the path, and that the constraints are correct, you can analyze the data path. These steps help you fine tune your constraints for paths across clock domains to ensure you get an accurate timing report.
- Check if the PLL phase shift is reducing the setup requirement.
You might adjust this by using PLL parameters and settings.
- Ignore paths that cross clock domains for logic protected with synchronization logic (for example, FIFOs or double-data synchronization registers), even if the clocks are related.
- Set false path constraints on all unnecessary paths:
Attempting to optimize unnecessary paths can prevent the Fitter from meeting the timing requirements on timing paths that are critical to the design.
Related Information