Visible to Intel only — GUID: ooe1521149569038
Ixiasoft
1. Introduction
2. Avalon® -ST Multi-Channel Shared Memory FIFO Core
3. Avalon® -ST Single-Clock and Dual-Clock FIFO Cores
4. Avalon® -ST Serial Peripheral Interface Core
5. SPI Core
6. SPI Agent/JTAG to Avalon® Host Bridge Cores
7. Intel eSPI Agent Core
8. eSPI to LPC Bridge Core
9. Ethernet MDIO Core
10. Intel FPGA 16550 Compatible UART Core
11. UART Core
12. JTAG UART Core
13. Intel FPGA Avalon® Mailbox Core
14. Intel FPGA Avalon® Mutex Core
15. Intel FPGA Avalon® I2C (Host) Core
16. Intel FPGA I2C Agent to Avalon® -MM Host Bridge Core
17. Intel FPGA Avalon® Compact Flash Core
18. EPCS/EPCQA Serial Flash Controller Core
19. Intel FPGA Serial Flash Controller Core
20. Intel FPGA Serial Flash Controller II Core
21. Intel FPGA Generic QUAD SPI Controller Core
22. Intel FPGA Generic QUAD SPI Controller II Core
23. Interval Timer Core
24. Intel FPGA Avalon FIFO Memory Core
25. On-Chip Memory (RAM and ROM) Intel FPGA IP
26. On-Chip Memory II (RAM or ROM) Intel FPGA IP
27. Optrex 16207 LCD Controller Core
28. PIO Core
29. PLL Cores
30. DMA Controller Core
31. Modular Scatter-Gather DMA Core
32. Scatter-Gather DMA Controller Core
33. SDRAM Controller Core
34. Tri-State SDRAM Core
35. Video Sync Generator and Pixel Converter Cores
36. Intel FPGA Interrupt Latency Counter Core
37. Performance Counter Unit Core
38. Vectored Interrupt Controller Core
39. Avalon® -ST Data Pattern Generator and Checker Cores
40. Avalon® -ST Test Pattern Generator and Checker Cores
41. System ID Peripheral Core
42. Avalon® Packets to Transactions Converter Core
43. Avalon® -ST Multiplexer and Demultiplexer Cores
44. Avalon® -ST Bytes to Packets and Packets to Bytes Converter Cores
45. Avalon® -ST Delay Core
46. Avalon® -ST Round Robin Scheduler Core
47. Avalon® -ST Splitter Core
48. Avalon® -MM DDR Memory Half Rate Bridge Core
49. Intel FPGA GMII to RGMII Converter Core
50. Intel FPGA MII to RMII Converter Core
51. HPS GMII to TSE 1000BASE-X/SGMII PCS Bridge Core Intel® FPGA IP
52. Intel FPGA HPS EMAC to Multi-rate PHY GMII Adapter Core
53. Intel FPGA MSI to GIC Generator Core
54. Cache Coherency Translator Intel® FPGA IP
55. Lightweight UART Core
10.2.1. Unsupported Features
10.2.2. Interface
10.2.3. General Architecture
10.2.4. 16550 UART General Programming Flow Chart
10.2.5. Configuration Parameters
10.2.6. DMA Support
10.2.7. FPGA Resource Usage
10.2.8. Timing and Fmax
10.2.9. Avalon® -MM Agent
10.2.10. Over-run/Under-run Conditions
10.2.11. Hardware Auto Flow-Control
10.2.12. Clock and Baud Rate Selection
15.5.2.1. Transfer Command FIFO (TFR_CMD)
15.5.2.2. Receive Data FIFO (RX_DATA)
15.5.2.3. Control Register (CTRL)
15.5.2.4. Interrupt Status Enable Register (ISER)
15.5.2.5. Interrupt Status Register (ISR)
15.5.2.6. Status Register (STATUS)
15.5.2.7. TFR CMD FIFO Level (TFR CMD FIFO LVL)
15.5.2.8. RX Data FIFO Level (RX Data FIFO LVL)
15.5.2.9. SCL Low Count (SCL LOW)
15.5.2.10. SCL High Count (SCL HIGH)
15.5.2.11. SDA Hold Count (SDA HOLD)
24.6.1. altera_avalon_fifo_init()
24.6.2. altera_avalon_fifo_read_status()
24.6.3. altera_avalon_fifo_read_ienable()
24.6.4. altera_avalon_fifo_read_almostfull()
24.6.5. altera_avalon_fifo_read_almostempty()
24.6.6. altera_avalon_fifo_read_event()
24.6.7. altera_avalon_fifo_read_level()
24.6.8. altera_avalon_fifo_clear_event()
24.6.9. altera_avalon_fifo_write_ienable()
24.6.10. altera_avalon_fifo_write_almostfull()
24.6.11. altera_avalon_fifo_write_almostempty()
24.6.12. altera_avalon_write_fifo()
24.6.13. altera_avalon_write_other_info()
24.6.14. altera_avalon_fifo_read_fifo()
24.6.15. altera_avalon_fifo_read_other_info()
25.1. Core Overview
25.2. Component-Level Design for On-Chip Memory
25.3. Platform Designer System-Level Design for On-Chip Memory
25.4. Simulation for On-Chip Memory
25.5. Intel® Quartus® Prime Project-Level Design for On-Chip Memory
25.6. Board-Level Design for On-Chip Memory
25.7. Example Design with On-Chip Memory
25.8. On-Chip Memory (RAM and ROM) Intel FPGA IP Revision History
26.1. Core Overview
26.2. Embedded Memory Architecture and Features
26.3. Component-Level Configurations
26.4. Interface Signals
26.5. Control and Status Registers
26.6. Software Programming Model
26.7. Platform Designer System-Level Design for On-Chip Memory II
26.8. Simulation for On-Chip Memory II
26.9. Intel® Quartus® Prime Project-Level Design for On-Chip Memory II
26.10. Board-Level Design for On-Chip Memory II
26.11. Example Design with On-Chip Memory II
26.12. On-Chip Memory II (RAM and ROM) Intel FPGA IP Revision History
31.1. Core Overview
31.2. Feature Description
31.3. mSGDMA Interfaces and Parameters
31.4. mSGDMA Descriptors
31.5. Register Map of mSGDMA
31.6. Programming Model
31.7. Modular Scatter-Gather DMA Prefetcher Core
31.8. Driver Implementation
31.9. Example Code Using mSGDMA Core
31.10. Modular Scatter-Gather DMA Core Revision History
31.5.1. Status Register
31.5.2. Control Register
31.5.3. Write Fill Level Register
31.5.4. Read Fill Level Register
31.5.5. Response Fill Level Register
31.5.6. Write Sequence Number Register
31.5.7. Read Sequence Number Register
31.5.8. Component Configuration 1 Register
31.5.9. Component Configuration 2 Register
31.5.10. Component Type Register
31.5.11. Component Version Register
31.8.1. alt_msgdma_standard_descriptor_async_transfer
31.8.2. alt_msgdma_extended_descriptor_async_transfer
31.8.3. alt_msgdma_descriptor_async_transfer
31.8.4. alt_msgdma_standard_descriptor_sync_transfer
31.8.5. alt_msgdma_extended_descriptor_sync_transfer
31.8.6. alt_msgdma_descriptor_sync_transfer
31.8.7. alt_msgdma_construct_standard_st_to_mm_descriptor
31.8.8. alt_msgdma_construct_standard_mm_to_st_descriptor
31.8.9. alt_msgdma_construct_standard_mm_to_mm_descriptor
31.8.10. alt_msgdma_construct_standard_descriptor
31.8.11. alt_msgdma_construct_extended_st_to_mm_descriptor
31.8.12. alt_msgdma_construct_extended_mm_to_st_descriptor
31.8.13. alt_msgdma_construct_extended_mm_to_mm_descriptor
31.8.14. alt_msgdma_construct_extended_descriptor
31.8.15. alt_msgdma_register_callback
31.8.16. alt_msgdma_open
31.8.17. alt_msgdma_write_standard_descriptor
31.8.18. alt_msgdma_write_extended_descriptor
31.8.19. alt_msgdma_init
31.8.20. alt_msgdma_irq
32.7.1. Data Structure
32.7.2. SG-DMA API
32.7.3. alt_avalon_sgdma_do_async_transfer()
32.7.4. alt_avalon_sgdma_do_sync_transfer()
32.7.5. alt_avalon_sgdma_construct_mem_to_mem_desc()
32.7.6. alt_avalon_sgdma_construct_stream_to_mem_desc()
32.7.7. alt_avalon_sgdma_construct_mem_to_stream_desc()
32.7.8. alt_avalon_sgdma_enable_desc_poll()
32.7.9. alt_avalon_sgdma_disable_desc_poll()
32.7.10. alt_avalon_sgdma_check_descriptor_status()
32.7.11. alt_avalon_sgdma_register_callback()
32.7.12. alt_avalon_sgdma_start()
32.7.13. alt_avalon_sgdma_stop()
32.7.14. alt_avalon_sgdma_open()
38.5.6.1. altera_vic_driver.enable_preemption
38.5.6.2. altera_vic_driver.enable_preemption_into_new_register_set
38.5.6.3. altera_vic_driver.enable_preemption_rs_<n>
38.5.6.4. altera_vic_driver.linker_section
38.5.6.5. altera_vic_driver.<name>.vec_size
38.5.6.6. altera_vic_driver.<name>.irq<n>_rrs
38.5.6.7. altera_vic_driver.<name>.irq<n>_ril
38.5.6.8. altera_vic_driver.<name>.irq<n>_rnmi
38.5.6.9. Default Settings for RRS and RIL
38.5.6.10. VIC BSP Design Rules for Intel FPGA HAL Implementation
38.5.6.11. RTOS Considerations
40.1. Core Overview
40.2. Resource Utilization and Performance
40.3. Test Pattern Generator
40.4. Test Pattern Checker
40.5. Hardware Simulation Considerations
40.6. Software Programming Model
40.7. Test Pattern Generator API
40.8. Test Pattern Checker API
40.9. Avalon® -ST Test Pattern Generator and Checker Cores Revision History
40.7.1. data_source_reset()
40.7.2. data_source_init()
40.7.3. data_source_get_id()
40.7.4. data_source_get_supports_packets()
40.7.5. data_source_get_num_channels()
40.7.6. data_source_get_symbols_per_cycle()
40.7.7. data_source_set_enable()
40.7.8. data_source_get_enable()
40.7.9. data_source_set_throttle()
40.7.10. data_source_get_throttle()
40.7.11. data_source_is_busy()
40.7.12. data_source_fill_level()
40.7.13. data_source_send_data()
40.8.1. data_sink_reset()
40.8.2. data_sink_init()
40.8.3. data_sink_get_id()
40.8.4. data_sink_get_supports_packets()
40.8.5. data_sink_get_num_channels()
40.8.6. data_sink_get_symbols_per_cycle()
40.8.7. data_sink_set enable()
40.8.8. data_sink_get_enable()
40.8.9. data_sink_set_throttle()
40.8.10. data_sink_get_throttle()
40.8.11. data_sink_get_packet_count()
40.8.12. data_sink_get_symbol_count()
40.8.13. data_sink_get_error_count()
40.8.14. data_sink_get_exception()
40.8.15. data_sink_exception_is_exception()
40.8.16. data_sink_exception_has_data_error()
40.8.17. data_sink_exception_has_missing_sop()
40.8.18. data_sink_exception_has_missing_eop()
40.8.19. data_sink_exception_signalled_error()
40.8.20. data_sink_exception_channel()
Visible to Intel only — GUID: ooe1521149569038
Ixiasoft
7.4. Interface Signals
Signal Names | Width (bit) | Direction | Description |
---|---|---|---|
Clock Interface | |||
clk | 1 | Input | Input clock signal. |
Reset Interface | |||
reset_n | 1 | Input | Synchronous reset signal. |
Avalon® memory-mapped interface Agent Interface 6 | |||
avmm_read | 1 | Input | Use this signal to enable read from the status register, error register, posted RX fifo or non-posted RX fifo. |
avmm_readdata[31:0] | 32 | Output | Use this signal to read data from the status register , error register, posted RX fifo or non-posted RX fifo. |
avmm_write | 1 | Input | Use this signal to enable write to posted TX fifo or non-posted TX fifo. |
avmm_writedata[31:0] | 32 | Input | Use this signal to write data to posted TX fifo or non-posted TX fifo. |
avmm_address[4:0] | 5 | Input | Avalon address determines address to access the respective register/fifo. |
Interrupt Signal | |||
irq | 1 | Output | Interrupt signal reflects update to status register. It is also triggered when the error register bit is asserted. |
eSPI Interface | |||
espi_clk | 1 | Input | eSPI serial clock signal. Frequency range: 20 MHz to 66 MHz. |
espi_reset_n | 1 | Input | eSPI reset signal. |
espi_cs_n | 1 | Input | eSPI chip select signal. |
espi_data[1:0]/[3:0] | 2 or 4 | Input/Output | eSPI bidirectional data bus. Data bus configuration is determined by the eSPI Mode of Operation parameter.
|
espi_alert_n | 1 | Output | eSPI alert signal. |
Conduit | |||
slp_s5_n | 1 | Output | S5 sleep control signal is sent when the power to non-critical systems should be shut off in S5. |
slp_s4_n | 1 | Output | S4 sleep control signal is sent when the power to non-critical systems should be shut off in S4. |
slp_s3_n | 1 | Output | S3 sleep control signal is sent when the power to non-critical systems should be shut off in S3. |
slp_a_n | 1 | Output | Use sleep A signal to support ASW devices that need power in the SX platform when the Intel® ME is on. |
slp_lan_n | 1 | Output | LAN sub-system sleep control signal is sent when the power to external wired LAN PHY can be shut off. |
slp_wlan_n | 1 | Output | Wireless LAN sub-system sleep control signal is sent when the power to external wireless LAN PHY can be shut off. |
sus_stat_n | 1 | Output | Suspend status signal is sent when the system is about to enter a low power state. |
sus_pwrdn_ack | 1 | Output | Suspend power down acknowledgement signal. |
sus_warn_n | 1 | Output | Suspend warning signal. |
oob_rst_warn | 1 | Output | Host sends this signal before the OOB processor is about to reset. |
host_rst_warn | 1 | Output | Host sends this signal before the host is about to reset. |
smiout_n | 1 | Output | Host sends this signal indicating the occurrence of SMI event. |
nmiout_n | 1 | Output | Host sends this signal indicating the occurrence of NMI event. |
host_c10 | 1 | Output | Indicates that the host CPU has entered deep power down state C10 or deeper. |
pch_to_ec[7:0] | 8 | Output | 8 independent Virtual Wire placeholder from the platform controller hub (eSPI host) to the eSPI agent IP. |
ec_to_pch[7:0] | 8 | Input | 8 independent Virtual Wire placeholder from eSPI agent IP to the platform controller hub (eSPI host). |
sus_ack_n | 1 | Input | Suspend acknowledgement signal. |
oob_rst_ack | 1 | Input | OOB reset acknowledgement signal. |
wake_n | 1 | Input | This signal wakes host up from Sx on any event. It can also wake up on LID switch or AC insertion event. |
pme_n | 1 | Input | This signal wakes host up from Sx through PCI defined PME. |
sci_n | 1 | Input | General purpose alert signal which results in OS invoking ACPI method. |
smi_n | 1 | Input | General purpose alert signal which results in BIOS invoking SMI code. |
rcin_n | 1 | Input | To request CPU reset on behalf of the keyboard controller. |
host_rst_ack | 1 | Input | Host reset acknowledgement signal. |
slave_boot_load_done | 1 | Input | Indicates boot load completion. |
slave_boot_load_status | 1 | Input | Indicates boot load status. |
pc_port<n>_<direction>[(m-1):0] | m = 8/16/32 | Input/Output | Peripheral channel I/O ports with configurable data width and direction. n = configurable value from 00 to A0. For example: pc_port80_out[15:0] |
rsmrst_n | 1 | Input | This signal provides input reset to some of the Virtual Wire indexes. |
vw_irq0 [7:0] 7 | 8 | Input | The virtual interrupt signal is triggered by an external source to enable communication with eSPI core. |
vw_irq1 [7:0]7 | 8 | Input | |
pltrst_n | 1 | Output | Platform Reset Signal. |
6 Use Avalon® memory-mapped interface to access the status register with Avalon address set to 00h and also the FIFO in the PC channel with Avalon address set to 04h.
7 The eSPI client can send multiple VW IRQ index groups in a single eSPI packet, up to the Operating Maximum VW Count programmed in its Virtual Wire Capabilities and Configuration Channel. For more information, refer to Table 9: Virtual Wire Index in the Enhanced Serial Peripheral Interface (eSPI) Base Specification.