Visible to Intel only — GUID: GUID-197849A2-8E1D-4917-94B3-A8A22A0A7458
Visible to Intel only — GUID: GUID-197849A2-8E1D-4917-94B3-A8A22A0A7458
Avoiding Data Races
The edges in a flow graph make explicit the dependence relationships that you want the library to enforce. Similarly, the concurrency limits on function_node and multifunction_node objects limit the maximum number of concurrent invocations that the runtime library will allow. These are the limits that are enforced by the library; the library does not automatically protect you from data races. You must explicitly prevent data races by using these mechanisms.
For example, the follow code has a data race because there is nothing to prevent concurrent accesses to the global count object referenced by node f:
graph g; int src_count = 1; int global_sum = 0; int limit = 100000; input_node< int > src( g, [&]( oneapi::tbb::flow_control& fc ) -> int { if ( src_count <= limit ) { return src_count++; } else { fc.stop(); return int(); } } ); src.activate(); function_node< int, int > f( g, unlimited, [&]( int i ) -> int { global_sum += i; // data race on global_sum return i; } ); make_edge( src, f ); g.wait_for_all(); cout << "global sum = " << global_sum << " and closed form = " << limit*(limit+1)/2 << "\n";
If you run the above example, it will likely calculate a global sum that is a bit smaller than the expected solution due to the data race. The data race could be avoided in this simple example by changing the allowed concurrency in f from unlimited to 1, forcing each value to be processed sequentially by f. You may also note that the input_node also updates a global value, src_count. However, since an input_node always executes serially, there is no race possible.