Visible to Intel only — GUID: GUID-CD6751CE-4B80-4FB9-B34A-A732913777B4
Abs
AbsBackward
Add
AvgPool
AvgPoolBackward
BatchNormForwardTraining
BatchNormInference
BatchNormTrainingBackward
BiasAdd
BiasAddBackward
Clamp
ClampBackward
Concat
Convolution
ConvolutionBackwardData
ConvolutionBackwardWeights
ConvTranspose
ConvTransposeBackwardData
ConvTransposeBackwardWeights
Dequantize
Divide
DynamicDequantize
DynamicQuantize
Elu
EluBackward
End
Exp
GELU
GELUBackward
HardSigmoid
HardSigmoidBackward
HardSwish
HardSwishBackward
Interpolate
InterpolateBackward
LayerNorm
LayerNormBackward
LeakyReLU
Log
LogSoftmax
LogSoftmaxBackward
MatMul
Maximum
MaxPool
MaxPoolBackward
Minimum
Mish
MishBackward
Multiply
Pow
PReLU
PReLUBackward
Quantize
Reciprocal
ReduceL1
ReduceL2
ReduceMax
ReduceMean
ReduceMin
ReduceProd
ReduceSum
ReLU
ReLUBackward
Reorder
Round
Select
Sigmoid
SigmoidBackward
SoftMax
SoftMaxBackward
SoftPlus
SoftPlusBackward
Sqrt
SqrtBackward
Square
SquaredDifference
StaticReshape
StaticTranspose
Subtract
Tanh
TanhBackward
TypeCast
Wildcard
enum dnnl_alg_kind_t
enum dnnl_normalization_flags_t
enum dnnl_primitive_kind_t
enum dnnl_prop_kind_t
enum dnnl_query_t
enum dnnl::normalization_flags
enum dnnl::query
struct dnnl_exec_arg_t
struct dnnl_primitive
struct dnnl_primitive_desc
struct dnnl::primitive
struct dnnl::primitive_desc
struct dnnl::primitive_desc_base
enum dnnl_rnn_direction_t
enum dnnl_rnn_flags_t
enum dnnl::rnn_direction
enum dnnl::rnn_flags
struct dnnl::augru_backward
struct dnnl::augru_forward
struct dnnl::gru_backward
struct dnnl::gru_forward
struct dnnl::lbr_augru_backward
struct dnnl::lbr_augru_forward
struct dnnl::lbr_gru_backward
struct dnnl::lbr_gru_forward
struct dnnl::lstm_backward
struct dnnl::lstm_forward
struct dnnl::rnn_primitive_desc_base
struct dnnl::vanilla_rnn_backward
struct dnnl::vanilla_rnn_forward
Visible to Intel only — GUID: GUID-CD6751CE-4B80-4FB9-B34A-A732913777B4
rnn_training_f32 cpp
This C++ API example demonstrates how to build GNMT model training. Annotated version: RNN f32 training example
This C++ API example demonstrates how to build GNMT model training. Annotated version: RNN f32 training example
/*******************************************************************************
* Copyright 2018-2022 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <cstring>
#include <math.h>
#include <numeric>
#include <utility>
#include "oneapi/dnnl/dnnl.hpp"
#include "example_utils.hpp"
using namespace dnnl;
// User input is:
// N0 sequences of length T0
const int N0 = 1 + rand() % 31;
// N1 sequences of length T1
const int N1 = 1 + rand() % 31;
// Assume T0 > T1
const int T0 = 31 + 1 + rand() % 31;
const int T1 = 1 + rand() % 31;
// Memory required to hold it: N0 * T0 + N1 * T1
// However it is possible to have these coming
// as padded chunks in larger memory:
// e.g. (N0 + N1) * T0
// We don't need to compact the data before processing,
// we can address the chunks via sub-memory and
// process the data via two RNN primitives:
// of time lengths T1 and T0 - T1.
// The leftmost primitive will process N0 + N1 subsequences of length T1
// The rightmost primitive will process remaining N0 subsequences
// of T0 - T1 length
const int leftmost_batch = N0 + N1;
const int rightmost_batch = N0;
const int leftmost_seq_length = T1;
const int rightmost_seq_length = T0 - T1;
// Number of channels
const int common_feature_size = 1024;
// RNN primitive characteristics
const int common_n_layers = 1;
const int lstm_n_gates = 4;
void simple_net(engine::kind engine_kind) {
using tag = memory::format_tag;
using dt = memory::data_type;
auto eng = engine(engine_kind, 0);
stream s(eng);
bool is_training = true;
auto fwd_inf_train = is_training ? prop_kind::forward_training
: prop_kind::forward_inference;
std::vector<primitive> fwd_net;
std::vector<primitive> bwd_net;
// Input tensor holds two batches with different sequence lengths.
// Shorter sequences are padded
memory::dims net_src_dims = {
T0, // time, maximum sequence length
N0 + N1, // n, total batch size
common_feature_size // c, common number of channels
};
// Two RNN primitives for different sequence lengths,
// one unidirectional layer, LSTM-based
memory::dims leftmost_src_layer_dims = {
leftmost_seq_length, // time
leftmost_batch, // n
common_feature_size // c
};
memory::dims rightmost_src_layer_dims = {
rightmost_seq_length, // time
rightmost_batch, // n
common_feature_size // c
};
memory::dims common_weights_layer_dims = {
common_n_layers, // layers
1, // directions
common_feature_size, // input feature size
lstm_n_gates, // gates number
common_feature_size // output feature size
};
memory::dims common_weights_iter_dims = {
common_n_layers, // layers
1, // directions
common_feature_size, // input feature size
lstm_n_gates, // gates number
common_feature_size // output feature size
};
memory::dims common_bias_dims = {
common_n_layers, // layers
1, // directions
lstm_n_gates, // gates number
common_feature_size // output feature size
};
memory::dims leftmost_dst_layer_dims = {
leftmost_seq_length, // time
leftmost_batch, // n
common_feature_size // c
};
memory::dims rightmost_dst_layer_dims = {
rightmost_seq_length, // time
rightmost_batch, // n
common_feature_size // c
};
// leftmost primitive passes its states to the next RNN iteration
// so it needs dst_iter parameter.
//
// rightmost primitive will consume these as src_iter and will access the
// memory via a sub-memory because it will have different batch dimension.
// We have arranged our primitives so that
// leftmost_batch >= rightmost_batch, and so the rightmost data will fit
// into the memory allocated for the leftmost.
memory::dims leftmost_dst_iter_dims = {
common_n_layers, // layers
1, // directions
leftmost_batch, // n
common_feature_size // c
};
memory::dims leftmost_dst_iter_c_dims = {
common_n_layers, // layers
1, // directions
leftmost_batch, // n
common_feature_size // c
};
memory::dims rightmost_src_iter_dims = {
common_n_layers, // layers
1, // directions
rightmost_batch, // n
common_feature_size // c
};
memory::dims rightmost_src_iter_c_dims = {
common_n_layers, // layers
1, // directions
rightmost_batch, // n
common_feature_size // c
};
// multiplication of tensor dimensions
auto tz_volume = [=](memory::dims tz_dims) {
return std::accumulate(tz_dims.begin(), tz_dims.end(), (memory::dim)1,
std::multiplies<memory::dim>());
};
// Create auxillary f32 memory descriptor
// based on user- supplied dimensions and layout.
auto formatted_md
= [=](const memory::dims &dimensions, memory::format_tag layout) {
return memory::desc {{dimensions}, dt::f32, layout};
};
// Create auxillary generic f32 memory descriptor
// based on supplied dimensions, with format_tag::any.
auto generic_md = [=](const memory::dims &dimensions) {
return formatted_md(dimensions, tag::any);
};
//
// I/O memory, coming from user
//
// Net input
std::vector<float> net_src(tz_volume(net_src_dims), 1.0f);
// NOTE: in this example we study input sequences with variable batch
// dimension, which get processed by two separate RNN primitives, thus
// the destination memory for the two will have different shapes: batch
// is the second dimension currently: see format_tag::tnc.
// We are not copying the output to some common user provided memory as we
// suggest that the user should rather keep the two output memories separate
// throughout the whole topology and only reorder to something else as
// needed.
// So there's no common net_dst, but there are two destinations instead:
// leftmost_dst_layer_memory
// rightmost_dst_layer_memory
// Memory for the user allocated memory
// Suppose user data is in tnc format.
auto net_src_memory
= dnnl::memory({{net_src_dims}, dt::f32, tag::tnc}, eng);
write_to_dnnl_memory(net_src.data(), net_src_memory);
// src_layer memory of the leftmost and rightmost RNN primitives
// are accessed through the respective sub-memories in larger memory.
// View primitives compute the strides to accommodate for padding.
auto user_leftmost_src_layer_md = net_src_memory.get_desc().submemory_desc(
leftmost_src_layer_dims, {0, 0, 0}); // t, n, c offsets
auto user_rightmost_src_layer_md
= net_src_memory.get_desc().submemory_desc(rightmost_src_layer_dims,
{leftmost_seq_length, 0, 0}); // t, n, c offsets
auto leftmost_src_layer_memory = net_src_memory;
auto rightmost_src_layer_memory = net_src_memory;
// Other user provided memory arrays, descriptors and primitives with the
// data layouts chosen by user. We'll have to reorder if RNN
// primitive prefers it in a different format.
std::vector<float> user_common_weights_layer(
tz_volume(common_weights_layer_dims), 1.0f);
auto user_common_weights_layer_memory = dnnl::memory(
{common_weights_layer_dims, dt::f32, tag::ldigo}, eng);
write_to_dnnl_memory(
user_common_weights_layer.data(), user_common_weights_layer_memory);
std::vector<float> user_common_weights_iter(
tz_volume(common_weights_iter_dims), 1.0f);
auto user_common_weights_iter_memory = dnnl::memory(
{{common_weights_iter_dims}, dt::f32, tag::ldigo}, eng);
write_to_dnnl_memory(
user_common_weights_layer.data(), user_common_weights_iter_memory);
std::vector<float> user_common_bias(tz_volume(common_bias_dims), 1.0f);
auto user_common_bias_memory
= dnnl::memory({{common_bias_dims}, dt::f32, tag::ldgo}, eng);
write_to_dnnl_memory(user_common_bias.data(), user_common_bias_memory);
std::vector<float> user_leftmost_dst_layer(
tz_volume(leftmost_dst_layer_dims), 1.0f);
auto user_leftmost_dst_layer_memory
= dnnl::memory({{leftmost_dst_layer_dims}, dt::f32, tag::tnc}, eng);
write_to_dnnl_memory(
user_leftmost_dst_layer.data(), user_leftmost_dst_layer_memory);
std::vector<float> user_rightmost_dst_layer(
tz_volume(rightmost_dst_layer_dims), 1.0f);
auto user_rightmost_dst_layer_memory = dnnl::memory(
{{rightmost_dst_layer_dims}, dt::f32, tag::tnc}, eng);
write_to_dnnl_memory(
user_rightmost_dst_layer.data(), user_rightmost_dst_layer_memory);
// Describe layer, forward pass, leftmost primitive.
// There are no primitives to the left from here,
// so src_iter_desc needs to be zero memory desc
auto leftmost_prim_desc = lstm_forward::primitive_desc(eng, // engine
fwd_inf_train, // aprop_kind
rnn_direction::unidirectional_left2right, // direction
user_leftmost_src_layer_md, // src_layer_desc
memory::desc(), // src_iter_desc
memory::desc(), // src_iter_c_desc
generic_md(common_weights_layer_dims), // weights_layer_desc
generic_md(common_weights_iter_dims), // weights_iter_desc
generic_md(common_bias_dims), // bias_desc
formatted_md(leftmost_dst_layer_dims, tag::tnc), // dst_layer_desc
generic_md(leftmost_dst_iter_dims), // dst_iter_desc
generic_md(leftmost_dst_iter_c_dims) // dst_iter_c_desc
);
//
// Need to connect leftmost and rightmost via "iter" parameters.
// We allocate memory here based on the shapes provided by RNN primitive.
//
auto leftmost_dst_iter_memory
= dnnl::memory(leftmost_prim_desc.dst_iter_desc(), eng);
auto leftmost_dst_iter_c_memory
= dnnl::memory(leftmost_prim_desc.dst_iter_c_desc(), eng);
// rightmost src_iter will be a sub-memory of dst_iter of leftmost
auto rightmost_src_iter_md
= leftmost_dst_iter_memory.get_desc().submemory_desc(
rightmost_src_iter_dims,
{0, 0, 0, 0}); // l, d, n, c offsets
auto rightmost_src_iter_memory = leftmost_dst_iter_memory;
auto rightmost_src_iter_c_md
= leftmost_dst_iter_c_memory.get_desc().submemory_desc(
rightmost_src_iter_c_dims,
{0, 0, 0, 0}); // l, d, n, c offsets
auto rightmost_src_iter_c_memory = leftmost_dst_iter_c_memory;
// Now rightmost primitive
// There are no primitives to the right from here,
// so dst_iter_desc is explicit zero memory desc
auto rightmost_prim_desc = lstm_forward::primitive_desc(eng, // engine
fwd_inf_train, // aprop_kind
rnn_direction::unidirectional_left2right, // direction
user_rightmost_src_layer_md, // src_layer_desc
rightmost_src_iter_md, // src_iter_desc
rightmost_src_iter_c_md, // src_iter_c_desc
generic_md(common_weights_layer_dims), // weights_layer_desc
generic_md(common_weights_iter_dims), // weights_iter_desc
generic_md(common_bias_dims), // bias_desc
formatted_md(rightmost_dst_layer_dims, tag::tnc), // dst_layer_desc
memory::desc(), // dst_iter_desc
memory::desc() // dst_iter_c_desc
);
//
// Weights and biases, layer memory
// Same layout should work across the layer, no reorders
// needed between leftmost and rigthmost, only reordering
// user memory to the RNN-friendly shapes.
//
auto common_weights_layer_memory = user_common_weights_layer_memory;
if (leftmost_prim_desc.weights_layer_desc()
!= common_weights_layer_memory.get_desc()) {
common_weights_layer_memory
= dnnl::memory(leftmost_prim_desc.weights_layer_desc(), eng);
reorder(user_common_weights_layer_memory, common_weights_layer_memory)
.execute(s, user_common_weights_layer_memory,
common_weights_layer_memory);
}
auto common_weights_iter_memory = user_common_weights_iter_memory;
if (leftmost_prim_desc.weights_iter_desc()
!= common_weights_iter_memory.get_desc()) {
common_weights_iter_memory
= dnnl::memory(leftmost_prim_desc.weights_iter_desc(), eng);
reorder(user_common_weights_iter_memory, common_weights_iter_memory)
.execute(s, user_common_weights_iter_memory,
common_weights_iter_memory);
}
auto common_bias_memory = user_common_bias_memory;
if (leftmost_prim_desc.bias_desc() != common_bias_memory.get_desc()) {
common_bias_memory = dnnl::memory(leftmost_prim_desc.bias_desc(), eng);
reorder(user_common_bias_memory, common_bias_memory)
.execute(s, user_common_bias_memory, common_bias_memory);
}
//
// Destination layer memory
//
auto leftmost_dst_layer_memory = user_leftmost_dst_layer_memory;
if (leftmost_prim_desc.dst_layer_desc()
!= leftmost_dst_layer_memory.get_desc()) {
leftmost_dst_layer_memory
= dnnl::memory(leftmost_prim_desc.dst_layer_desc(), eng);
reorder(user_leftmost_dst_layer_memory, leftmost_dst_layer_memory)
.execute(s, user_leftmost_dst_layer_memory,
leftmost_dst_layer_memory);
}
auto rightmost_dst_layer_memory = user_rightmost_dst_layer_memory;
if (rightmost_prim_desc.dst_layer_desc()
!= rightmost_dst_layer_memory.get_desc()) {
rightmost_dst_layer_memory
= dnnl::memory(rightmost_prim_desc.dst_layer_desc(), eng);
reorder(user_rightmost_dst_layer_memory, rightmost_dst_layer_memory)
.execute(s, user_rightmost_dst_layer_memory,
rightmost_dst_layer_memory);
}
// We also create workspace memory based on the information from
// the workspace_primitive_desc(). This is needed for internal
// communication between forward and backward primitives during
// training.
auto create_ws = [=](dnnl::lstm_forward::primitive_desc &pd) {
return dnnl::memory(pd.workspace_desc(), eng);
};
auto leftmost_workspace_memory = create_ws(leftmost_prim_desc);
auto rightmost_workspace_memory = create_ws(rightmost_prim_desc);
// Construct the RNN primitive objects
lstm_forward leftmost_layer(leftmost_prim_desc);
leftmost_layer.execute(s,
{{DNNL_ARG_SRC_LAYER, leftmost_src_layer_memory},
{DNNL_ARG_WEIGHTS_LAYER, common_weights_layer_memory},
{DNNL_ARG_WEIGHTS_ITER, common_weights_iter_memory},
{DNNL_ARG_BIAS, common_bias_memory},
{DNNL_ARG_DST_LAYER, leftmost_dst_layer_memory},
{DNNL_ARG_DST_ITER, leftmost_dst_iter_memory},
{DNNL_ARG_DST_ITER_C, leftmost_dst_iter_c_memory},
{DNNL_ARG_WORKSPACE, leftmost_workspace_memory}});
lstm_forward rightmost_layer(rightmost_prim_desc);
rightmost_layer.execute(s,
{{DNNL_ARG_SRC_LAYER, rightmost_src_layer_memory},
{DNNL_ARG_SRC_ITER, rightmost_src_iter_memory},
{DNNL_ARG_SRC_ITER_C, rightmost_src_iter_c_memory},
{DNNL_ARG_WEIGHTS_LAYER, common_weights_layer_memory},
{DNNL_ARG_WEIGHTS_ITER, common_weights_iter_memory},
{DNNL_ARG_BIAS, common_bias_memory},
{DNNL_ARG_DST_LAYER, rightmost_dst_layer_memory},
{DNNL_ARG_WORKSPACE, rightmost_workspace_memory}});
// No backward pass for inference
if (!is_training) return;
//
// Backward primitives will reuse memory from forward
// and allocate/describe specifics here. Only relevant for training.
//
// User-provided memory for backward by data output
std::vector<float> net_diff_src(tz_volume(net_src_dims), 1.0f);
auto net_diff_src_memory
= dnnl::memory(formatted_md(net_src_dims, tag::tnc), eng);
write_to_dnnl_memory(net_diff_src.data(), net_diff_src_memory);
// diff_src follows the same layout we have for net_src
auto user_leftmost_diff_src_layer_md
= net_diff_src_memory.get_desc().submemory_desc(
leftmost_src_layer_dims, {0, 0, 0}); // t, n, c offsets
auto user_rightmost_diff_src_layer_md
= net_diff_src_memory.get_desc().submemory_desc(
rightmost_src_layer_dims,
{leftmost_seq_length, 0, 0}); // t, n, c offsets
auto leftmost_diff_src_layer_memory = net_diff_src_memory;
auto rightmost_diff_src_layer_memory = net_diff_src_memory;
// User-provided memory for backpropagation by weights
std::vector<float> user_common_diff_weights_layer(
tz_volume(common_weights_layer_dims), 1.0f);
auto user_common_diff_weights_layer_memory = dnnl::memory(
formatted_md(common_weights_layer_dims, tag::ldigo), eng);
write_to_dnnl_memory(user_common_diff_weights_layer.data(),
user_common_diff_weights_layer_memory);
std::vector<float> user_common_diff_bias(tz_volume(common_bias_dims), 1.0f);
auto user_common_diff_bias_memory
= dnnl::memory(formatted_md(common_bias_dims, tag::ldgo), eng);
write_to_dnnl_memory(
user_common_diff_bias.data(), user_common_diff_bias_memory);
// User-provided input to the backward primitive.
// To be updated by the user after forward pass using some cost function.
memory::dims net_diff_dst_dims = {
T0, // time
N0 + N1, // n
common_feature_size // c
};
// Suppose user data is in tnc format.
std::vector<float> net_diff_dst(tz_volume(net_diff_dst_dims), 1.0f);
auto net_diff_dst_memory
= dnnl::memory(formatted_md(net_diff_dst_dims, tag::tnc), eng);
write_to_dnnl_memory(net_diff_dst.data(), net_diff_dst_memory);
// diff_dst_layer memory of the leftmost and rightmost RNN primitives
// are accessed through the respective sub-memory in larger memory.
// View primitives compute the strides to accommodate for padding.
auto user_leftmost_diff_dst_layer_md
= net_diff_dst_memory.get_desc().submemory_desc(
leftmost_dst_layer_dims, {0, 0, 0}); // t, n, c offsets
auto user_rightmost_diff_dst_layer_md
= net_diff_dst_memory.get_desc().submemory_desc(
rightmost_dst_layer_dims,
{leftmost_seq_length, 0, 0}); // t, n, c offsets
auto leftmost_diff_dst_layer_memory = net_diff_dst_memory;
auto rightmost_diff_dst_layer_memory = net_diff_dst_memory;
// Backward leftmost primitive descriptor
auto leftmost_bwd_prim_desc = lstm_backward::primitive_desc(eng, // engine
prop_kind::backward, // aprop_kind
rnn_direction::unidirectional_left2right, // direction
user_leftmost_src_layer_md, // src_layer_desc
memory::desc(), // src_iter_desc
memory::desc(), // src_iter_c_desc
generic_md(common_weights_layer_dims), // weights_layer_desc
generic_md(common_weights_iter_dims), // weights_iter_desc
generic_md(common_bias_dims), // bias_desc
formatted_md(leftmost_dst_layer_dims, tag::tnc), // dst_layer_desc
generic_md(leftmost_dst_iter_dims), // dst_iter_desc
generic_md(leftmost_dst_iter_c_dims), // dst_iter_c_desc
user_leftmost_diff_src_layer_md, // diff_src_layer_desc
memory::desc(), // diff_src_iter_desc
memory::desc(), // diff_src_iter_c_desc
generic_md(common_weights_layer_dims), // diff_weights_layer_desc
generic_md(common_weights_iter_dims), // diff_weights_iter_desc
generic_md(common_bias_dims), // diff_bias_desc
user_leftmost_diff_dst_layer_md, // diff_dst_layer_desc
generic_md(leftmost_dst_iter_dims), // diff_dst_iter_desc
generic_md(leftmost_dst_iter_c_dims), // diff_dst_iter_c_desc
leftmost_prim_desc // hint from forward pass
);
// As the batch dimensions are different between leftmost and rightmost
// we need to use a sub-memory. rightmost needs less memory, so it will
// be a sub-memory of leftmost.
auto leftmost_diff_dst_iter_memory
= dnnl::memory(leftmost_bwd_prim_desc.diff_dst_iter_desc(), eng);
auto leftmost_diff_dst_iter_c_memory
= dnnl::memory(leftmost_bwd_prim_desc.diff_dst_iter_c_desc(), eng);
auto rightmost_diff_src_iter_md
= leftmost_diff_dst_iter_memory.get_desc().submemory_desc(
rightmost_src_iter_dims,
{0, 0, 0, 0}); // l, d, n, c offsets
auto rightmost_diff_src_iter_memory = leftmost_diff_dst_iter_memory;
auto rightmost_diff_src_iter_c_md
= leftmost_diff_dst_iter_c_memory.get_desc().submemory_desc(
rightmost_src_iter_c_dims,
{0, 0, 0, 0}); // l, d, n, c offsets
auto rightmost_diff_src_iter_c_memory = leftmost_diff_dst_iter_c_memory;
// Backward rightmost primitive descriptor
auto rightmost_bwd_prim_desc = lstm_backward::primitive_desc(eng, // engine
prop_kind::backward, // aprop_kind
rnn_direction::unidirectional_left2right, // direction
user_rightmost_src_layer_md, // src_layer_desc
generic_md(rightmost_src_iter_dims), // src_iter_desc
generic_md(rightmost_src_iter_c_dims), // src_iter_c_desc
generic_md(common_weights_layer_dims), // weights_layer_desc
generic_md(common_weights_iter_dims), // weights_iter_desc
generic_md(common_bias_dims), // bias_desc
formatted_md(rightmost_dst_layer_dims, tag::tnc), // dst_layer_desc
memory::desc(), // dst_iter_desc
memory::desc(), // dst_iter_c_desc
user_rightmost_diff_src_layer_md, // diff_src_layer_desc
rightmost_diff_src_iter_md, // diff_src_iter_desc
rightmost_diff_src_iter_c_md, // diff_src_iter_c_desc
generic_md(common_weights_layer_dims), // diff_weights_layer_desc
generic_md(common_weights_iter_dims), // diff_weights_iter_desc
generic_md(common_bias_dims), // diff_bias_desc
user_rightmost_diff_dst_layer_md, // diff_dst_layer_desc
memory::desc(), // diff_dst_iter_desc
memory::desc(), // diff_dst_iter_c_desc
rightmost_prim_desc // hint from forward pass
);
//
// Memory for backward pass
//
// src layer uses the same memory as forward
auto leftmost_src_layer_bwd_memory = leftmost_src_layer_memory;
auto rightmost_src_layer_bwd_memory = rightmost_src_layer_memory;
// Memory for weights and biases for backward pass
// Try to use the same memory between forward and backward, but
// sometimes reorders are needed.
auto common_weights_layer_bwd_memory = common_weights_layer_memory;
if (leftmost_bwd_prim_desc.weights_layer_desc()
!= leftmost_prim_desc.weights_layer_desc()) {
common_weights_layer_bwd_memory
= memory(leftmost_bwd_prim_desc.weights_layer_desc(), eng);
reorder(common_weights_layer_memory, common_weights_layer_bwd_memory)
.execute(s, common_weights_layer_memory,
common_weights_layer_bwd_memory);
}
auto common_weights_iter_bwd_memory = common_weights_iter_memory;
if (leftmost_bwd_prim_desc.weights_iter_desc()
!= leftmost_prim_desc.weights_iter_desc()) {
common_weights_iter_bwd_memory
= memory(leftmost_bwd_prim_desc.weights_iter_desc(), eng);
reorder(common_weights_iter_memory, common_weights_iter_bwd_memory)
.execute(s, common_weights_iter_memory,
common_weights_iter_bwd_memory);
}
auto common_bias_bwd_memory = common_bias_memory;
if (leftmost_bwd_prim_desc.bias_desc() != common_bias_memory.get_desc()) {
common_bias_bwd_memory
= dnnl::memory(leftmost_bwd_prim_desc.bias_desc(), eng);
reorder(common_bias_memory, common_bias_bwd_memory)
.execute(s, common_bias_memory, common_bias_bwd_memory);
}
// diff_weights and biases
auto common_diff_weights_layer_memory
= user_common_diff_weights_layer_memory;
auto reorder_common_diff_weights_layer = false;
if (leftmost_bwd_prim_desc.diff_weights_layer_desc()
!= common_diff_weights_layer_memory.get_desc()) {
common_diff_weights_layer_memory = dnnl::memory(
leftmost_bwd_prim_desc.diff_weights_layer_desc(), eng);
reorder_common_diff_weights_layer = true;
}
auto common_diff_bias_memory = user_common_diff_bias_memory;
auto reorder_common_diff_bias = false;
if (leftmost_bwd_prim_desc.diff_bias_desc()
!= common_diff_bias_memory.get_desc()) {
common_diff_bias_memory
= dnnl::memory(leftmost_bwd_prim_desc.diff_bias_desc(), eng);
reorder_common_diff_bias = true;
}
// dst_layer memory for backward pass
auto leftmost_dst_layer_bwd_memory = leftmost_dst_layer_memory;
if (leftmost_bwd_prim_desc.dst_layer_desc()
!= leftmost_dst_layer_bwd_memory.get_desc()) {
leftmost_dst_layer_bwd_memory
= dnnl::memory(leftmost_bwd_prim_desc.dst_layer_desc(), eng);
reorder(leftmost_dst_layer_memory, leftmost_dst_layer_bwd_memory)
.execute(s, leftmost_dst_layer_memory,
leftmost_dst_layer_bwd_memory);
}
auto rightmost_dst_layer_bwd_memory = rightmost_dst_layer_memory;
if (rightmost_bwd_prim_desc.dst_layer_desc()
!= rightmost_dst_layer_bwd_memory.get_desc()) {
rightmost_dst_layer_bwd_memory
= dnnl::memory(rightmost_bwd_prim_desc.dst_layer_desc(), eng);
reorder(rightmost_dst_layer_memory, rightmost_dst_layer_bwd_memory)
.execute(s, rightmost_dst_layer_memory,
rightmost_dst_layer_bwd_memory);
}
// Similar to forward, the backward primitives are connected
// via "iter" parameters.
auto common_diff_weights_iter_memory = dnnl::memory(
leftmost_bwd_prim_desc.diff_weights_iter_desc(), eng);
auto leftmost_dst_iter_bwd_memory = leftmost_dst_iter_memory;
if (leftmost_bwd_prim_desc.dst_iter_desc()
!= leftmost_dst_iter_bwd_memory.get_desc()) {
leftmost_dst_iter_bwd_memory
= dnnl::memory(leftmost_bwd_prim_desc.dst_iter_desc(), eng);
reorder(leftmost_dst_iter_memory, leftmost_dst_iter_bwd_memory)
.execute(s, leftmost_dst_iter_memory,
leftmost_dst_iter_bwd_memory);
}
auto leftmost_dst_iter_c_bwd_memory = leftmost_dst_iter_c_memory;
if (leftmost_bwd_prim_desc.dst_iter_c_desc()
!= leftmost_dst_iter_c_bwd_memory.get_desc()) {
leftmost_dst_iter_c_bwd_memory
= dnnl::memory(leftmost_bwd_prim_desc.dst_iter_c_desc(), eng);
reorder(leftmost_dst_iter_c_memory, leftmost_dst_iter_c_bwd_memory)
.execute(s, leftmost_dst_iter_c_memory,
leftmost_dst_iter_c_bwd_memory);
}
// Construct the RNN primitive objects for backward
lstm_backward rightmost_layer_bwd(rightmost_bwd_prim_desc);
rightmost_layer_bwd.execute(s,
{{DNNL_ARG_SRC_LAYER, rightmost_src_layer_bwd_memory},
{DNNL_ARG_SRC_ITER, rightmost_src_iter_memory},
{DNNL_ARG_SRC_ITER_C, rightmost_src_iter_c_memory},
{DNNL_ARG_WEIGHTS_LAYER, common_weights_layer_bwd_memory},
{DNNL_ARG_WEIGHTS_ITER, common_weights_iter_bwd_memory},
{DNNL_ARG_BIAS, common_bias_bwd_memory},
{DNNL_ARG_DST_LAYER, rightmost_dst_layer_bwd_memory},
{DNNL_ARG_DIFF_SRC_LAYER, rightmost_diff_src_layer_memory},
{DNNL_ARG_DIFF_SRC_ITER, rightmost_diff_src_iter_memory},
{DNNL_ARG_DIFF_SRC_ITER_C,
rightmost_diff_src_iter_c_memory},
{DNNL_ARG_DIFF_WEIGHTS_LAYER,
common_diff_weights_layer_memory},
{DNNL_ARG_DIFF_WEIGHTS_ITER,
common_diff_weights_iter_memory},
{DNNL_ARG_DIFF_BIAS, common_diff_bias_memory},
{DNNL_ARG_DIFF_DST_LAYER, rightmost_diff_dst_layer_memory},
{DNNL_ARG_WORKSPACE, rightmost_workspace_memory}});
lstm_backward leftmost_layer_bwd(leftmost_bwd_prim_desc);
leftmost_layer_bwd.execute(s,
{{DNNL_ARG_SRC_LAYER, leftmost_src_layer_bwd_memory},
{DNNL_ARG_WEIGHTS_LAYER, common_weights_layer_bwd_memory},
{DNNL_ARG_WEIGHTS_ITER, common_weights_iter_bwd_memory},
{DNNL_ARG_BIAS, common_bias_bwd_memory},
{DNNL_ARG_DST_LAYER, leftmost_dst_layer_bwd_memory},
{DNNL_ARG_DST_ITER, leftmost_dst_iter_bwd_memory},
{DNNL_ARG_DST_ITER_C, leftmost_dst_iter_c_bwd_memory},
{DNNL_ARG_DIFF_SRC_LAYER, leftmost_diff_src_layer_memory},
{DNNL_ARG_DIFF_WEIGHTS_LAYER,
common_diff_weights_layer_memory},
{DNNL_ARG_DIFF_WEIGHTS_ITER,
common_diff_weights_iter_memory},
{DNNL_ARG_DIFF_BIAS, common_diff_bias_memory},
{DNNL_ARG_DIFF_DST_LAYER, leftmost_diff_dst_layer_memory},
{DNNL_ARG_DIFF_DST_ITER, leftmost_diff_dst_iter_memory},
{DNNL_ARG_DIFF_DST_ITER_C, leftmost_diff_dst_iter_c_memory},
{DNNL_ARG_WORKSPACE, leftmost_workspace_memory}});
if (reorder_common_diff_weights_layer) {
reorder(common_diff_weights_layer_memory,
user_common_diff_weights_layer_memory)
.execute(s, common_diff_weights_layer_memory,
user_common_diff_weights_layer_memory);
}
if (reorder_common_diff_bias) {
reorder(common_diff_bias_memory, user_common_diff_bias_memory)
.execute(s, common_diff_bias_memory,
user_common_diff_bias_memory);
}
//
// User updates weights and bias using diffs
//
s.wait();
}
int main(int argc, char **argv) {
return handle_example_errors(simple_net, parse_engine_kind(argc, argv));
}