Visible to Intel only — GUID: GUID-96ACEA61-2963-478D-84F7-CB8BCC71EFF5
Abs
AbsBackward
Add
AvgPool
AvgPoolBackward
BatchNormForwardTraining
BatchNormInference
BatchNormTrainingBackward
BiasAdd
BiasAddBackward
Clamp
ClampBackward
Concat
Convolution
ConvolutionBackwardData
ConvolutionBackwardWeights
ConvTranspose
ConvTransposeBackwardData
ConvTransposeBackwardWeights
Dequantize
Divide
DynamicDequantize
DynamicQuantize
Elu
EluBackward
End
Exp
GELU
GELUBackward
HardSigmoid
HardSigmoidBackward
HardSwish
HardSwishBackward
Interpolate
InterpolateBackward
LayerNorm
LayerNormBackward
LeakyReLU
Log
LogSoftmax
LogSoftmaxBackward
MatMul
Maximum
MaxPool
MaxPoolBackward
Minimum
Mish
MishBackward
Multiply
Pow
PReLU
PReLUBackward
Quantize
Reciprocal
ReduceL1
ReduceL2
ReduceMax
ReduceMean
ReduceMin
ReduceProd
ReduceSum
ReLU
ReLUBackward
Reorder
Round
Select
Sigmoid
SigmoidBackward
SoftMax
SoftMaxBackward
SoftPlus
SoftPlusBackward
Sqrt
SqrtBackward
Square
SquaredDifference
StaticReshape
StaticTranspose
Subtract
Tanh
TanhBackward
TypeCast
Wildcard
enum dnnl_alg_kind_t
enum dnnl_normalization_flags_t
enum dnnl_primitive_kind_t
enum dnnl_prop_kind_t
enum dnnl_query_t
enum dnnl::normalization_flags
enum dnnl::query
struct dnnl_exec_arg_t
struct dnnl_primitive
struct dnnl_primitive_desc
struct dnnl::primitive
struct dnnl::primitive_desc
struct dnnl::primitive_desc_base
enum dnnl_rnn_direction_t
enum dnnl_rnn_flags_t
enum dnnl::rnn_direction
enum dnnl::rnn_flags
struct dnnl::augru_backward
struct dnnl::augru_forward
struct dnnl::gru_backward
struct dnnl::gru_forward
struct dnnl::lbr_augru_backward
struct dnnl::lbr_augru_forward
struct dnnl::lbr_gru_backward
struct dnnl::lbr_gru_forward
struct dnnl::lstm_backward
struct dnnl::lstm_forward
struct dnnl::rnn_primitive_desc_base
struct dnnl::vanilla_rnn_backward
struct dnnl::vanilla_rnn_forward
Visible to Intel only — GUID: GUID-96ACEA61-2963-478D-84F7-CB8BCC71EFF5
memory_format_propagation cpp
This example demonstrates memory format propagation, which is critical for deep learning applications performance. Annotated version: Memory Format Propagation
This example demonstrates memory format propagation, which is critical for deep learning applications performance. Annotated version: Memory Format Propagation
/*******************************************************************************
* Copyright 2019-2022 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <iostream>
#include <sstream>
#include <string>
#include "oneapi/dnnl/dnnl.hpp"
#include "example_utils.hpp"
using namespace dnnl;
void memory_format_propagation_tutorial(engine::kind engine_kind) {
// [Initialize engine and stream]
engine eng(engine_kind, 0);
stream s(eng);
// [Initialize engine and stream]
// [Create placeholder memory descriptors]
// Tensor and kernel dimensions. We use the same 3x3 kernel with padding=1
// for both convolution and pooling primitives, which means that the
// activation tensor shapes do not change.
const int N = 1, H = 14, W = 14, IC = 128, OC = 256, KH = 3, KW = 3;
auto conv_src_md = memory::desc({N, IC, H, W}, memory::data_type::f32,
memory::format_tag::any // let convolution choose memory format
);
auto conv_weights_md = memory::desc(
{OC, IC, KH, KW}, memory::data_type::f32,
memory::format_tag::any // let convolution choose memory format
);
auto conv_dst_md = memory::desc({N, OC, H, W}, memory::data_type::f32,
memory::format_tag::any // let convolution choose memory format
);
const auto &pool_dst_md = conv_dst_md; // shape does not change
// [Create placeholder memory descriptors]
// [Create convolution and pooling primitive descriptors]
auto conv_pd = convolution_forward::primitive_desc(
eng, prop_kind::forward_inference, algorithm::convolution_auto,
conv_src_md, conv_weights_md,
conv_dst_md, // shape information
{1, 1}, // strides
{1, 1}, {1, 1} // left and right padding
);
auto pool_pd
= pooling_forward::primitive_desc(eng, prop_kind::forward_inference,
algorithm::pooling_max, conv_pd.dst_desc(),
pool_dst_md, // shape information
{1, 1}, {KH, KW}, // strides and kernel
{0, 0}, // dilation
{1, 1}, {1, 1} // left and right padding
);
// [Create convolution and pooling primitive descriptors]
// [Create source and destination memory objects]
auto src_mem = memory(
{{N, IC, H, W}, memory::data_type::f32, memory::format_tag::nchw},
eng);
auto weights_mem = memory({{OC, IC, KH, KW}, memory::data_type::f32,
memory::format_tag::oihw},
eng);
auto dst_mem = memory(
{{N, OC, H, W}, memory::data_type::f32, memory::format_tag::nchw},
eng);
// [Create source and destination memory objects]
// [Determine if source needs to be reordered]
bool need_reorder_src = conv_pd.src_desc() != src_mem.get_desc();
// [Determine if source needs to be reordered]
// [Determine if weights and destination need to be reordered]
bool need_reorder_weights
= conv_pd.weights_desc() != weights_mem.get_desc();
bool need_reorder_dst = conv_pd.dst_desc() != dst_mem.get_desc();
// [Determine if weights and destination need to be reordered]
// [Allocate intermediate buffers if necessary]
auto conv_src_mem
= need_reorder_src ? memory(conv_pd.src_desc(), eng) : src_mem;
auto conv_weights_mem = need_reorder_weights
? memory(conv_pd.weights_desc(), eng)
: weights_mem;
auto conv_dst_mem = memory(conv_pd.dst_desc(), eng);
auto pool_dst_mem
= need_reorder_dst ? memory(pool_pd.dst_desc(), eng) : dst_mem;
// [Allocate intermediate buffers if necessary]
// [Perform reorders for source data if necessary]
if (need_reorder_src) {
auto reorder_src = reorder(src_mem, conv_src_mem);
reorder_src.execute(
s, {{DNNL_ARG_FROM, src_mem}, {DNNL_ARG_TO, conv_src_mem}});
s.wait(); // wait for the reorder to complete
}
if (need_reorder_weights) {
auto reorder_weights = reorder(weights_mem, conv_weights_mem);
reorder_weights.execute(s,
{{DNNL_ARG_FROM, weights_mem},
{DNNL_ARG_TO, conv_weights_mem}});
s.wait(); // wait for the reorder to complete
}
// [Perform reorders for source data if necessary]
// [Create and execute convolution and pooling primitives]
auto conv_scratchpad_mem = memory(conv_pd.scratchpad_desc(), eng);
auto conv = convolution_forward(conv_pd);
conv.execute(s,
{{DNNL_ARG_SRC, conv_src_mem}, {DNNL_ARG_WEIGHTS, conv_weights_mem},
{DNNL_ARG_DST, conv_dst_mem}});
auto pool_scratchpad_mem = memory(pool_pd.scratchpad_desc(), eng);
auto pool = pooling_forward(pool_pd);
pool.execute(
s, {{DNNL_ARG_SRC, conv_dst_mem}, {DNNL_ARG_DST, pool_dst_mem}});
s.wait();
// [Create and execute convolution and pooling primitives]
// [Reorder destination data if necessary]
if (need_reorder_dst) {
auto reorder_dst = reorder(pool_dst_mem, dst_mem);
reorder_dst.execute(
s, {{DNNL_ARG_FROM, pool_dst_mem}, {DNNL_ARG_TO, dst_mem}});
s.wait();
}
// [Reorder destination data if necessary]
}
int main(int argc, char **argv) {
return handle_example_errors(
memory_format_propagation_tutorial, parse_engine_kind(argc, argv));
}