Visible to Intel only — GUID: GUID-6C7B76DC-3DF9-4342-A3F0-F121E46817DC
Abs
AbsBackward
Add
AvgPool
AvgPoolBackward
BatchNormForwardTraining
BatchNormInference
BatchNormTrainingBackward
BiasAdd
BiasAddBackward
Clamp
ClampBackward
Concat
Convolution
ConvolutionBackwardData
ConvolutionBackwardWeights
ConvTranspose
ConvTransposeBackwardData
ConvTransposeBackwardWeights
Dequantize
Divide
DynamicDequantize
DynamicQuantize
Elu
EluBackward
End
Exp
GELU
GELUBackward
HardSigmoid
HardSigmoidBackward
HardSwish
HardSwishBackward
Interpolate
InterpolateBackward
LayerNorm
LayerNormBackward
LeakyReLU
Log
LogSoftmax
LogSoftmaxBackward
MatMul
Maximum
MaxPool
MaxPoolBackward
Minimum
Mish
MishBackward
Multiply
Pow
PReLU
PReLUBackward
Quantize
Reciprocal
ReduceL1
ReduceL2
ReduceMax
ReduceMean
ReduceMin
ReduceProd
ReduceSum
ReLU
ReLUBackward
Reorder
Round
Select
Sigmoid
SigmoidBackward
SoftMax
SoftMaxBackward
SoftPlus
SoftPlusBackward
Sqrt
SqrtBackward
Square
SquaredDifference
StaticReshape
StaticTranspose
Subtract
Tanh
TanhBackward
TypeCast
Wildcard
enum dnnl_alg_kind_t
enum dnnl_normalization_flags_t
enum dnnl_primitive_kind_t
enum dnnl_prop_kind_t
enum dnnl_query_t
enum dnnl::normalization_flags
enum dnnl::query
struct dnnl_exec_arg_t
struct dnnl_primitive
struct dnnl_primitive_desc
struct dnnl::primitive
struct dnnl::primitive_desc
struct dnnl::primitive_desc_base
enum dnnl_rnn_direction_t
enum dnnl_rnn_flags_t
enum dnnl::rnn_direction
enum dnnl::rnn_flags
struct dnnl::augru_backward
struct dnnl::augru_forward
struct dnnl::gru_backward
struct dnnl::gru_forward
struct dnnl::lbr_augru_backward
struct dnnl::lbr_augru_forward
struct dnnl::lbr_gru_backward
struct dnnl::lbr_gru_forward
struct dnnl::lstm_backward
struct dnnl::lstm_forward
struct dnnl::rnn_primitive_desc_base
struct dnnl::vanilla_rnn_backward
struct dnnl::vanilla_rnn_forward
Visible to Intel only — GUID: GUID-6C7B76DC-3DF9-4342-A3F0-F121E46817DC
inference_int8_matmul cpp
Annotated version: MatMul Tutorial: INT8 Inference
Annotated version: MatMul Tutorial: INT8 Inference
/*******************************************************************************
* Copyright 2019-2022 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <cassert>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <iostream>
#include <random>
#include <stdexcept>
#include <vector>
#include "oneapi/dnnl/dnnl.hpp"
#include "example_utils.hpp"
using namespace dnnl;
namespace {
void init_vector(std::vector<float> &v) {
std::mt19937 gen;
std::uniform_real_distribution<float> u(0, 1);
for (auto &e : v)
e = u(gen);
}
void init_vector(std::vector<uint8_t> &v) {
std::mt19937 gen;
std::uniform_int_distribution<unsigned int> u(0, 255);
for (auto &e : v)
e = static_cast<uint8_t>(u(gen));
}
} // namespace
int number_of_runs = 1;
// Create a MatMul primitive descriptor for the following op:
// C_u8 = ReLU(sc_A * sc_B[:] * (A_u8 - zp_A) * B_s8) / sc_C + zp_C
//
// Here:
// - Matrices A and C are known to be non-transposed but their M dimension is
// not known. They can be activation matrices in an MLP topology and the M
// dimension can be the mini-batch dimension.
// - zp_A and zp_C are zero points for matrices A and C which are stored as
// uint8_t. These are run-time parameters that are not known at the primitive
// creation time.
// - The B matrix is stored as int8_t, its zero point is 0, and all its
// dimensions are known. This matrix can be a matrix of weights in an MLP
// topology.
// - The scaling values are not known at the primitive creation time.
matmul::primitive_desc matmul_pd_create(
int64_t K, int64_t N, const engine &eng) {
const int64_t M = DNNL_RUNTIME_DIM_VAL;
memory::desc a_md({M, K}, memory::data_type::u8, {K, 1}); // M x K layout
memory::desc b_md({K, N}, memory::data_type::s8, memory::format_tag::any);
memory::desc c_md({M, N}, memory::data_type::u8, {N, 1}); // M x N layout
// Create attributes and indicate that the alpha and zero points are
// runtime parameters
primitive_attr attr;
attr.set_scales_mask(DNNL_ARG_SRC, /* mask */ 0);
attr.set_scales_mask(DNNL_ARG_WEIGHTS, /* mask */ 1 << 1);
attr.set_scales_mask(DNNL_ARG_DST, /* mask */ 0);
attr.set_zero_points_mask(DNNL_ARG_SRC, /* mask */ 0);
attr.set_zero_points_mask(DNNL_ARG_DST, /* mask */ 0);
post_ops po;
po.append_eltwise(algorithm::eltwise_relu, 0.f, 0.f);
attr.set_post_ops(po);
// Create a MatMul primitive descriptor
return matmul::primitive_desc(eng, a_md, b_md, c_md, attr);
}
void prepare_input(memory &A_u8_mem, memory &sc_A_mem, memory &sc_B_mem,
memory &sc_C_mem, memory &zp_A_mem, memory &zp_C_mem) {
int64_t M = A_u8_mem.get_desc().get_dims()[0];
int64_t N = sc_B_mem.get_desc().get_dims()[0];
int64_t K = A_u8_mem.get_desc().get_dims()[1];
std::vector<uint8_t> A_u8(M * K);
init_vector(A_u8);
std::vector<float> sc_B(N);
init_vector(sc_B);
float sc_A = 0.5f;
float sc_C = 0.25f;
int32_t zp_A = 128, zp_C = 40;
write_to_dnnl_memory(A_u8.data(), A_u8_mem);
write_to_dnnl_memory(&zp_A, zp_A_mem);
write_to_dnnl_memory(&zp_C, zp_C_mem);
write_to_dnnl_memory(&sc_A, sc_A_mem);
write_to_dnnl_memory(sc_B.data(), sc_B_mem);
write_to_dnnl_memory(&sc_C, sc_C_mem);
}
void sanity_check(memory &C_u8_mem, memory &zp_C_mem) {
int64_t M = C_u8_mem.get_desc().get_dims()[0];
int64_t N = C_u8_mem.get_desc().get_dims()[1];
int32_t zp_C = 0;
std::vector<uint8_t> C_u8(M * N);
read_from_dnnl_memory(C_u8.data(), C_u8_mem);
read_from_dnnl_memory(&zp_C, zp_C_mem);
// simple check: C_u8 >= zp_C
for (int64_t i = 0; i < M * N; ++i)
if (C_u8[i] < zp_C)
throw std::logic_error(
"Smoke check failed."
"\n\tQuantized value is smaller than the zero point,"
"\n\twhich should not happen since ReLU was applied.");
}
void infer(const matmul &matmul_p, int64_t M, int64_t N, int64_t K,
const memory &B_s8_mem, const engine &eng) {
// inputs of the current layer / operation
memory A_u8_mem({{M, K}, memory::data_type::u8, {K, 1}}, eng);
memory zp_A_mem({{1}, memory::data_type::s32, {1}}, eng);
memory zp_C_mem({{1}, memory::data_type::s32, {1}}, eng);
memory sc_A_mem({{1}, memory::data_type::f32, {1}}, eng);
memory sc_B_mem({{N}, memory::data_type::f32, {1}}, eng);
memory sc_C_mem({{1}, memory::data_type::f32, {1}}, eng);
// the function below fills dnnl::memory with some values
// these memories, typically, come from the previous layers / operations
// with meaningful data inside
prepare_input(A_u8_mem, sc_A_mem, sc_B_mem, sc_C_mem, zp_A_mem, zp_C_mem);
// output - no initialization required
memory C_u8_mem({{M, N}, memory::data_type::u8, {N, 1}}, eng);
stream s(eng);
for (int run = 0; run < number_of_runs; ++run)
matmul_p.execute(s,
{{DNNL_ARG_SRC, A_u8_mem}, {DNNL_ARG_WEIGHTS, B_s8_mem},
{DNNL_ARG_DST, C_u8_mem},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC, sc_A_mem},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, sc_B_mem},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_DST, sc_C_mem},
{DNNL_ARG_ATTR_ZERO_POINTS | DNNL_ARG_SRC, zp_A_mem},
{DNNL_ARG_ATTR_ZERO_POINTS | DNNL_ARG_DST, zp_C_mem}});
s.wait();
// a sanity check for the correctness of the output
sanity_check(C_u8_mem, zp_C_mem);
}
void inference_int8_matmul(engine::kind engine_kind) {
engine eng(engine_kind, 0);
const int64_t K = 96;
const int64_t N = 1000;
auto matmul_pd = matmul_pd_create(K, N, eng);
// Original weights stored as float in a known format
std::vector<float> B_f32(K * N);
init_vector(B_f32);
// Pre-packed weights stored as int8_t
memory B_s8_mem(matmul_pd.weights_desc(), eng);
{
stream s(eng);
memory B_f32_mem(
{{K, N}, memory::data_type::f32, memory::format_tag::ab}, eng);
write_to_dnnl_memory(B_f32.data(), B_f32_mem);
reorder(B_f32_mem, B_s8_mem).execute(s, B_f32_mem, B_s8_mem);
s.wait();
}
matmul matmul_p(matmul_pd);
for (int64_t M : {1, 100})
infer(matmul_p, M, N, K, B_s8_mem, eng);
}
int main(int argc, char **argv) {
engine::kind engine_kind = parse_engine_kind(argc, argv);
return handle_example_errors(inference_int8_matmul, engine_kind);
}