Visible to Intel only — GUID: GUID-21B0CF14-917B-494F-8A28-B772496A3BAD
Abs
AbsBackward
Add
AvgPool
AvgPoolBackward
BatchNormForwardTraining
BatchNormInference
BatchNormTrainingBackward
BiasAdd
BiasAddBackward
Clamp
ClampBackward
Concat
Convolution
ConvolutionBackwardData
ConvolutionBackwardWeights
ConvTranspose
ConvTransposeBackwardData
ConvTransposeBackwardWeights
Dequantize
Divide
DynamicDequantize
DynamicQuantize
Elu
EluBackward
End
Exp
GELU
GELUBackward
HardSigmoid
HardSigmoidBackward
HardSwish
HardSwishBackward
Interpolate
InterpolateBackward
LayerNorm
LayerNormBackward
LeakyReLU
Log
LogSoftmax
LogSoftmaxBackward
MatMul
Maximum
MaxPool
MaxPoolBackward
Minimum
Mish
MishBackward
Multiply
Pow
PReLU
PReLUBackward
Quantize
Reciprocal
ReduceL1
ReduceL2
ReduceMax
ReduceMean
ReduceMin
ReduceProd
ReduceSum
ReLU
ReLUBackward
Reorder
Round
Select
Sigmoid
SigmoidBackward
SoftMax
SoftMaxBackward
SoftPlus
SoftPlusBackward
Sqrt
SqrtBackward
Square
SquaredDifference
StaticReshape
StaticTranspose
Subtract
Tanh
TanhBackward
TypeCast
Wildcard
enum dnnl_alg_kind_t
enum dnnl_normalization_flags_t
enum dnnl_primitive_kind_t
enum dnnl_prop_kind_t
enum dnnl_query_t
enum dnnl::normalization_flags
enum dnnl::query
struct dnnl_exec_arg_t
struct dnnl_primitive
struct dnnl_primitive_desc
struct dnnl::primitive
struct dnnl::primitive_desc
struct dnnl::primitive_desc_base
enum dnnl_rnn_direction_t
enum dnnl_rnn_flags_t
enum dnnl::rnn_direction
enum dnnl::rnn_flags
struct dnnl::augru_backward
struct dnnl::augru_forward
struct dnnl::gru_backward
struct dnnl::gru_forward
struct dnnl::lbr_augru_backward
struct dnnl::lbr_augru_forward
struct dnnl::lbr_gru_backward
struct dnnl::lbr_gru_forward
struct dnnl::lstm_backward
struct dnnl::lstm_forward
struct dnnl::rnn_primitive_desc_base
struct dnnl::vanilla_rnn_backward
struct dnnl::vanilla_rnn_forward
Visible to Intel only — GUID: GUID-21B0CF14-917B-494F-8A28-B772496A3BAD
getting_started cpp
This C++ API example demonstrates the basics of the oneDNN programming model. Annotated version: Getting started
This C++ API example demonstrates the basics of the oneDNN programming model. Annotated version: Getting started
/*******************************************************************************
* Copyright 2019-2023 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <cmath>
#include <numeric>
#include <stdexcept>
#include <vector>
#include "oneapi/dnnl/dnnl.hpp"
#include "oneapi/dnnl/dnnl_debug.h"
#include "example_utils.hpp"
using namespace dnnl;
// [Prologue]
// [Prologue]
void getting_started_tutorial(engine::kind engine_kind) {
// [Initialize engine]
engine eng(engine_kind, 0);
// [Initialize engine]
// [Initialize stream]
stream engine_stream(eng);
// [Initialize stream]
// [Create user's data]
const int N = 1, H = 13, W = 13, C = 3;
// Compute physical strides for each dimension
const int stride_N = H * W * C;
const int stride_H = W * C;
const int stride_W = C;
const int stride_C = 1;
// An auxiliary function that maps logical index to the physical offset
auto offset = [=](int n, int h, int w, int c) {
return n * stride_N + h * stride_H + w * stride_W + c * stride_C;
};
// The image size
const int image_size = N * H * W * C;
// Allocate a buffer for the image
std::vector<float> image(image_size);
// Initialize the image with some values
for (int n = 0; n < N; ++n)
for (int h = 0; h < H; ++h)
for (int w = 0; w < W; ++w)
for (int c = 0; c < C; ++c) {
int off = offset(
n, h, w, c); // Get the physical offset of a pixel
image[off] = -std::cos(off / 10.f);
}
// [Create user's data]
// [Init src_md]
auto src_md = memory::desc(
{N, C, H, W}, // logical dims, the order is defined by a primitive
memory::data_type::f32, // tensor's data type
memory::format_tag::nhwc // memory format, NHWC in this case
);
// [Init src_md]
// [Init alt_src_md]
auto alt_src_md = memory::desc(
{N, C, H, W}, // logical dims, the order is defined by a primitive
memory::data_type::f32, // tensor's data type
{stride_N, stride_C, stride_H, stride_W} // the strides
);
// Sanity check: the memory descriptors should be the same
if (src_md != alt_src_md)
throw std::logic_error("Memory descriptor initialization mismatch.");
// [Init alt_src_md]
// [Create memory objects]
// src_mem contains a copy of image after write_to_dnnl_memory function
auto src_mem = memory(src_md, eng);
write_to_dnnl_memory(image.data(), src_mem);
// For dst_mem the library allocates buffer
auto dst_mem = memory(src_md, eng);
// [Create memory objects]
// [Create a ReLU primitive]
// ReLU primitive descriptor, which corresponds to a particular
// implementation in the library
auto relu_pd = eltwise_forward::primitive_desc(
eng, // an engine the primitive will be created for
prop_kind::forward_inference, algorithm::eltwise_relu,
src_md, // source memory descriptor for an operation to work on
src_md, // destination memory descriptor for an operation to work on
0.f, // alpha parameter means negative slope in case of ReLU
0.f // beta parameter is ignored in case of ReLU
);
// ReLU primitive
auto relu = eltwise_forward(relu_pd); // !!! this can take quite some time
// [Create a ReLU primitive]
// [Execute ReLU primitive]
// Execute ReLU (out-of-place)
relu.execute(engine_stream, // The execution stream
{
// A map with all inputs and outputs
{DNNL_ARG_SRC, src_mem}, // Source tag and memory obj
{DNNL_ARG_DST, dst_mem}, // Destination tag and memory obj
});
// Wait the stream to complete the execution
engine_stream.wait();
// [Execute ReLU primitive]
// [Execute ReLU primitive in-place]
// Execute ReLU (in-place)
// relu.execute(engine_stream, {
// {DNNL_ARG_SRC, src_mem},
// {DNNL_ARG_DST, src_mem},
// });
// [Execute ReLU primitive in-place]
// [Check the results]
// Obtain a buffer for the `dst_mem` and cast it to `float *`.
// This is safe since we created `dst_mem` as f32 tensor with known
// memory format.
std::vector<float> relu_image(image_size);
read_from_dnnl_memory(relu_image.data(), dst_mem);
/*
// Check the results
for (int n = 0; n < N; ++n)
for (int h = 0; h < H; ++h)
for (int w = 0; w < W; ++w)
for (int c = 0; c < C; ++c) {
int off = offset(
n, h, w, c); // get the physical offset of a pixel
float expected = image[off] < 0
? 0.f
: image[off]; // expected value
if (relu_image[off] != expected) {
std::cout << "At index(" << n << ", " << c << ", " << h
<< ", " << w << ") expect " << expected
<< " but got " << relu_image[off]
<< std::endl;
throw std::logic_error("Accuracy check failed.");
}
}
// [Check the results]
*/
}
// [Main]
int main(int argc, char **argv) {
int exit_code = 0;
engine::kind engine_kind = parse_engine_kind(argc, argv);
try {
getting_started_tutorial(engine_kind);
} catch (dnnl::error &e) {
std::cout << "oneDNN error caught: " << std::endl
<< "\tStatus: " << dnnl_status2str(e.status) << std::endl
<< "\tMessage: " << e.what() << std::endl;
exit_code = 1;
} catch (std::string &e) {
std::cout << "Error in the example: " << e << "." << std::endl;
exit_code = 2;
} catch (std::exception &e) {
std::cout << "Error in the example: " << e.what() << "." << std::endl;
exit_code = 3;
}
std::cout << "Example " << (exit_code ? "failed" : "passed") << " on "
<< engine_kind2str_upper(engine_kind) << "." << std::endl;
finalize();
return exit_code;
}
// [Main]