Visible to Intel only — GUID: GUID-93EFCD59-6CF2-40EA-878A-45CAA9C90FA9
Abs
AbsBackward
Add
AvgPool
AvgPoolBackward
BatchNormForwardTraining
BatchNormInference
BatchNormTrainingBackward
BiasAdd
BiasAddBackward
Clamp
ClampBackward
Concat
Convolution
ConvolutionBackwardData
ConvolutionBackwardWeights
ConvTranspose
ConvTransposeBackwardData
ConvTransposeBackwardWeights
Dequantize
Divide
DynamicDequantize
DynamicQuantize
Elu
EluBackward
End
Exp
GELU
GELUBackward
HardSigmoid
HardSigmoidBackward
HardSwish
HardSwishBackward
Interpolate
InterpolateBackward
LayerNorm
LayerNormBackward
LeakyReLU
Log
LogSoftmax
LogSoftmaxBackward
MatMul
Maximum
MaxPool
MaxPoolBackward
Minimum
Mish
MishBackward
Multiply
Pow
PReLU
PReLUBackward
Quantize
Reciprocal
ReduceL1
ReduceL2
ReduceMax
ReduceMean
ReduceMin
ReduceProd
ReduceSum
ReLU
ReLUBackward
Reorder
Round
Select
Sigmoid
SigmoidBackward
SoftMax
SoftMaxBackward
SoftPlus
SoftPlusBackward
Sqrt
SqrtBackward
Square
SquaredDifference
StaticReshape
StaticTranspose
Subtract
Tanh
TanhBackward
TypeCast
Wildcard
enum dnnl_alg_kind_t
enum dnnl_normalization_flags_t
enum dnnl_primitive_kind_t
enum dnnl_prop_kind_t
enum dnnl_query_t
enum dnnl::normalization_flags
enum dnnl::query
struct dnnl_exec_arg_t
struct dnnl_primitive
struct dnnl_primitive_desc
struct dnnl::primitive
struct dnnl::primitive_desc
struct dnnl::primitive_desc_base
enum dnnl_rnn_direction_t
enum dnnl_rnn_flags_t
enum dnnl::rnn_direction
enum dnnl::rnn_flags
struct dnnl::augru_backward
struct dnnl::augru_forward
struct dnnl::gru_backward
struct dnnl::gru_forward
struct dnnl::lbr_augru_backward
struct dnnl::lbr_augru_forward
struct dnnl::lbr_gru_backward
struct dnnl::lbr_gru_forward
struct dnnl::lstm_backward
struct dnnl::lstm_forward
struct dnnl::rnn_primitive_desc_base
struct dnnl::vanilla_rnn_backward
struct dnnl::vanilla_rnn_forward
Visible to Intel only — GUID: GUID-93EFCD59-6CF2-40EA-878A-45CAA9C90FA9
cpu_sgemm_and_matmul cpp
Annotated version: MatMul Tutorial: Comparison with SGEMM
Annotated version: MatMul Tutorial: Comparison with SGEMM
/*******************************************************************************
* Copyright 2019-2022 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <cassert>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <iostream>
#include <random>
#include <stdexcept>
#include <vector>
#include "oneapi/dnnl/dnnl.hpp"
#include "example_utils.hpp"
using namespace dnnl;
namespace {
void init_vector(std::vector<float> &v) {
std::mt19937 gen;
std::uniform_real_distribution<float> u(-1, 1);
for (auto &e : v)
e = u(gen);
}
int compare_vectors(const std::vector<float> &v1, const std::vector<float> &v2,
int64_t K, const char *message) {
double v1_l2 = 0, diff_l2 = 0;
for (size_t n = 0; n < v1.size(); ++n) {
float diff = v1[n] - v2[n];
v1_l2 += v1[n] * v1[n];
diff_l2 += diff * diff;
}
v1_l2 = std::sqrt(v1_l2);
diff_l2 = std::sqrt(diff_l2);
// Finding the reasonable (tight and accurate) threshold is quite difficult
// problem.
// The implementation testing might also use special data filling to
// alleviate issues related to the finite precision arithmetic.
// However, in simple cases the machine epsilon multiplied by log(K) should
// work reasonably well.
const double threshold = std::numeric_limits<float>::epsilon()
* std::log(std::max(2., (double)K));
bool ok = diff_l2 <= threshold * v1_l2;
printf("%s\n\tL2 Norms"
"\n\t\tReference matrix:%g\n\t\tError:%g\n\t\tRelative_error:%g\n"
"\tAccuracy check: %s\n",
message, v1_l2, diff_l2, diff_l2 / v1_l2, ok ? "OK" : "FAILED");
return ok ? 0 : 1;
}
} // namespace
int number_of_runs = 1;
float fixed_beta = 0.f;
engine eng(engine::kind::cpu, 0); // We create a global engine for simplicity
// Create a _dynamic_ MatMul primitive that can work with arbitrary shapes
// and alpha parameters.
// Warning: current limitation is that beta parameter should be known in
// advance (use fixed_beta).
matmul dynamic_matmul_create() {
// We assume that beta is known at the primitive creation time
float beta = fixed_beta;
memory::dims a_shape = {DNNL_RUNTIME_DIM_VAL, DNNL_RUNTIME_DIM_VAL};
memory::dims b_shape = {DNNL_RUNTIME_DIM_VAL, DNNL_RUNTIME_DIM_VAL};
memory::dims c_shape = {DNNL_RUNTIME_DIM_VAL, DNNL_RUNTIME_DIM_VAL};
memory::dims a_strides = {DNNL_RUNTIME_DIM_VAL, DNNL_RUNTIME_DIM_VAL};
memory::dims b_strides = {DNNL_RUNTIME_DIM_VAL, DNNL_RUNTIME_DIM_VAL};
memory::dims c_strides = {DNNL_RUNTIME_DIM_VAL, 1};
memory::desc a_md(a_shape, memory::data_type::f32, a_strides);
memory::desc b_md(b_shape, memory::data_type::f32, b_strides);
memory::desc c_md(c_shape, memory::data_type::f32, c_strides);
// Create attributes (to handle alpha dynamically and beta if necessary)
primitive_attr attr;
attr.set_scales_mask(DNNL_ARG_WEIGHTS, /* mask */ 0);
if (beta != 0.f) {
post_ops po;
po.append_sum(beta);
attr.set_post_ops(po);
}
// Create a MatMul primitive
matmul::primitive_desc matmul_pd(eng, a_md, b_md, c_md, attr);
return matmul(matmul_pd);
}
// Execute a _dynamic_ MatMul primitive created earlier. All the parameters are
// passed at a run-time (except for beta which has to be specified at the
// primitive creation time due to the current limitation).
void dynamic_matmul_execute(matmul &matmul_p, char transA, char transB,
int64_t M, int64_t N, int64_t K, float alpha, const float *A,
int64_t lda, const float *B, int64_t ldb, float beta, float *C,
int64_t ldc) {
using dims = memory::dims;
if (beta != fixed_beta)
throw std::logic_error("Run-time beta is not yet supported.");
// Translate transA and transB
dims a_strides = tolower(transA) == 'n' ? dims {lda, 1} : dims {1, lda};
dims b_strides = tolower(transB) == 'n' ? dims {ldb, 1} : dims {1, ldb};
// Wrap raw pointers into oneDNN memories (with proper shapes)
memory A_m({{M, K}, memory::data_type::f32, a_strides}, eng, (void *)A);
memory B_m({{K, N}, memory::data_type::f32, b_strides}, eng, (void *)B);
memory C_m({{M, N}, memory::data_type::f32, {ldc, 1}}, eng, (void *)C);
// Prepare oneDNN memory for alpha
memory alpha_m({{1}, memory::data_type::f32, {1}}, eng, &alpha);
// Execute the MatMul primitive
stream s(eng);
matmul_p.execute(s,
{{DNNL_ARG_SRC, A_m}, {DNNL_ARG_WEIGHTS, B_m}, {DNNL_ARG_DST, C_m},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, alpha_m}});
s.wait();
}
void sgemm_and_matmul_with_params(char transA, char transB, int64_t M,
int64_t N, int64_t K, float alpha, float beta) {
if (beta != fixed_beta)
throw std::logic_error("Run-time beta is not yet supported.");
// Allocate and initialize matrices
std::vector<float> A(M * K);
init_vector(A);
std::vector<float> B(K * N);
init_vector(B);
std::vector<float> C_sgemm(M * N);
init_vector(C_sgemm);
std::vector<float> C_dynamic_matmul = C_sgemm;
// Prepare leading dimensions
int64_t lda = tolower(transA) == 'n' ? K : M;
int64_t ldb = tolower(transB) == 'n' ? N : K;
int64_t ldc = N;
// 1. Execute sgemm
for (int run = 0; run < number_of_runs; ++run)
dnnl_sgemm(transA, transB, M, N, K, alpha, A.data(), lda, B.data(), ldb,
beta, C_sgemm.data(), ldc);
// 2.a Create dynamic MatMul
auto dynamic_matmul = dynamic_matmul_create();
// 2.b Execute
for (int run = 0; run < number_of_runs; ++run)
dynamic_matmul_execute(dynamic_matmul, transA, transB, M, N, K, alpha,
A.data(), lda, B.data(), ldb, beta, C_dynamic_matmul.data(),
ldc);
int rc = 0;
rc |= compare_vectors(
C_sgemm, C_dynamic_matmul, K, "Compare SGEMM vs dynamic MatMul");
if (rc) throw std::logic_error("The resulting matrices diverged too much.");
}
void sgemm_and_matmul() {
sgemm_and_matmul_with_params('N', 'T', 10, 20, 30, 1.1f, fixed_beta);
}
int main(int argc, char **argv) {
return handle_example_errors({engine::kind::cpu}, sgemm_and_matmul);
}