Visible to Intel only — GUID: GUID-A2D67070-B09A-4D3B-A72A-FEF05F268605
basic_statistics_dense_batch.cpp
column_accessor_homogen.cpp
cor_dense_batch.cpp
cov_dense_batch.cpp
dbscan_brute_force_batch.cpp
df_cls_hist_batch.cpp
df_cls_traverse_model.cpp
df_reg_hist_batch.cpp
df_reg_traverse_model.cpp
kmeans_init_dense.cpp
kmeans_lloyd_dense_batch.cpp
knn_cls_brute_force_dense_batch.cpp
knn_reg_brute_force_dense_batch.cpp
knn_search_brute_force_dense_batch.cpp
linear_kernel_dense_batch.cpp
linear_regression_dense_batch.cpp
pca_cor_dense_batch.cpp
pca_precomputed_cor_dense_batch.cpp
pca_precomputed_cov_dense_batch.cpp
rbf_kernel_dense_batch.cpp
svm_two_class_thunder_dense_batch.cpp
basic_statistics_dense_batch.cpp
column_accessor_homogen.cpp
connected_components_batch.cpp
cor_dense_batch.cpp
cov_dense_batch.cpp
dbscan_brute_force_batch.cpp
df_cls_dense_batch.cpp
df_reg_dense_batch.cpp
directed_graph.cpp
graph_service_functions.cpp
jaccard_batch.cpp
jaccard_batch_app.cpp
kmeans_init_dense.cpp
kmeans_lloyd_dense_batch.cpp
knn_cls_brute_force_dense_batch.cpp
knn_cls_kd_tree_dense_batch.cpp
knn_search_brute_force_dense_batch.cpp
linear_kernel_dense_batch.cpp
linear_regression_dense_batch.cpp
louvain_batch.cpp
pca_dense_batch.cpp
pca_precomputed_dense_batch.cpp
polynomial_kernel_dense_batch.cpp
rbf_kernel_dense_batch.cpp
shortest_paths_batch.cpp
sigmoid_kernel_dense_batch.cpp
subgraph_isomorphism_batch.cpp
svm_multi_class_thunder_dense_batch.cpp
svm_nu_cls_thunder_dense_batch.cpp
svm_nu_reg_thunder_dense_batch.cpp
svm_reg_thunder_dense_batch.cpp
svm_two_class_smo_dense_batch.cpp
svm_two_class_thunder_dense_batch.cpp
triangle_counting_batch.cpp
K-Means Clustering
Density-Based Spatial Clustering of Applications with Noise
Correlation and Variance-Covariance Matrices
Principal Component Analysis
Principal Components Analysis Transform
Singular Value Decomposition
Association Rules
Kernel Functions
Expectation-Maximization
Cholesky Decomposition
QR Decomposition
Outlier Detection
Distance Matrix
Distributions
Engines
Moments of Low Order
Quantile
Quality Metrics
Sorting
Normalization
Optimization Solvers
Decision Forest
Decision Trees
Gradient Boosted Trees
Stump
Linear and Ridge Regressions
LASSO and Elastic Net Regressions
k-Nearest Neighbors (kNN) Classifier
Implicit Alternating Least Squares
Logistic Regression
Naïve Bayes Classifier
Support Vector Machine Classifier
Multi-class Classifier
Boosting
Visible to Intel only — GUID: GUID-A2D67070-B09A-4D3B-A72A-FEF05F268605
Sigmoid kernel
The Sigmoid kernel is a popular kernel function used in kernelized learning algorithms.
Operation |
Computational methods |
Programming Interface |
||
Mathematical formulation
Computing
Given a set X of n feature vectors of dimension p and a set Y of m feature vectors , the problem is to compute the sigmoid kernel function for any pair of input vectors:
where .
Computation method: dense
The method computes the sigmoid kernel function for X and Y matrices.
Programming Interface
Refer to API Reference: Sigmoid kernel.