Visible to Intel only — GUID: GUID-3B97A01D-0665-46F6-AEBE-39F5A98539C5
Why is FPGA Compilation Different?
Types of SYCL* FPGA Compilation
FPGA Compilation Flags
Emulate and Debug Your Design
Evaluate Your Kernel Through Simulation
Device Selectors for FPGA
FPGA IP Authoring Flow
Fast Recompile for FPGA
Generate Multiple FPGA Images (Linux only)
FPGA BSPs and Boards
Targeting Multiple Homogeneous FPGA Devices
Targeting Multiple Platforms
FPGA-CPU Interaction
FPGA Performance Optimization
Use of RTL Libraries for FPGA
Use SYCL Shared Library With Third-Party Applications
FPGA Workflows in IDEs
Intel oneAPI DPC++ Library (oneDPL)
Intel oneAPI Math Kernel Library (oneMKL)
Intel oneAPI Threading Building Blocks (oneTBB)
Intel oneAPI Data Analytics Library (oneDAL)
Intel oneAPI Collective Communications Library (oneCCL)
Intel oneAPI Deep Neural Network Library (oneDNN)
Intel oneAPI Video Processing Library (oneVPL)
Other Libraries
Visible to Intel only — GUID: GUID-3B97A01D-0665-46F6-AEBE-39F5A98539C5
Memory-Mapped Interface Using Accessors
The following example shows how to create multiple memory-mapped (mm_host) interfaces using the buffer_location property in SYCL*:
#include <sycl/sycl.hpp> #include <iostream> #include <sycl/ext/intel/fpga_extensions.hpp> #include <vector> using namespace sycl; // Forward declare the kernel name in the global scope. // This is an FPGA best practice that reduces name mangling in the // optimization reports. class SimpleVAdd; // The members of the functor serve as inputs and outputs to your IP. // The code inside the operator()() function describes your IP. template <class AccA, class AccB, class AccC> class SimpleVAddKernel { AccA A; AccB B; AccC C; int count; public: SimpleVAddKernel(AccA A_in, AccB B_in, AccC C_out, int count_in) : A(A_in), B(B_in), C(C_out), count(count_in) {} void operator()() const { // clang-format on for (int i = 0; i < count; i++) { C[i] = A[i] + B[i]; } } }; constexpr int VECT_SIZE = 4; int main() { #if FPGA_SIMULATOR auto selector = sycl::ext::intel::fpga_simulator_selector_v; #elif FPGA_HARDWARE auto selector = sycl::ext::intel::fpga_selector_v; #else // #if FPGA_EMULATOR auto selector = sycl::ext::intel::fpga_emulator_selector_v; #endif queue q(my_selector); int count = VECT_SIZE; // pass array size by value // declare arrays and fill them std::vector<int> VA; std::vector<int> VB; std::vector<int> VC(count); for (int i = 0; i < count; i++) { VA.push_back(i); VB.push_back(count - i); } std::cout << "add two vectors of size " << count << std::endl; buffer bufferA{VA}; buffer bufferB{VB}; buffer bufferC{VC}; q.submit([&](handler &h) { accessor accessorA{bufferA, h, read_only}; accessor accessorB{bufferB, h, read_only}; accessor accessorC{bufferC, h, read_write, no_init}; h.single_task<SimpleVAdd>(SimpleVAddKernel<decltype(accessorA), decltype(accessorB), decltype(accessorC)>{accessorA, accessorB, accessorC, count}); }); // verify that VC is correct bool passed = true; for (int i = 0; i < count; i++) { int expected = VA[i] + VB[i]; std::cout << "idx=" << i << ": result " << VC[i] << ", expected (" << expected << ") VA=" << VA[i] << " + VB=" << VB[i] << std::endl; if (VC[i] != expected) { passed = false; } } std::cout << (passed ? "PASSED" : "FAILED") << std::endl; return passed ? EXIT_SUCCESS : EXIT_FAILURE; }