Cyclone® IV FPGA
The Cyclone® IV FPGA family extends the Cyclone® FPGA series leadership in providing low power FPGA, with transceiver options. Ideal for high-volume, cost-sensitive applications, Cyclone® IV FPGA enables you to meet increasing bandwidth requirements.
See also: FPGA Design Software, Design Store, Downloads, Community and Support
Cyclone® IV FPGA
Cyclone® IV GX FPGA
Architecture consists of up to 150K vertically arranged logic elements (LEs).
Cyclone® IV E FPGA
Architecture consists of up to 115K vertically arranged logic elements (LEs).
Benefits
System Costs Optimization
All Cyclone® IV FPGA require only two power supplies for operation, simplifying your power distribution network and saving board costs, board space and design time. With the integrated transceivers on the Cyclone® IV FPGA architecture, you will get simplified board design and integration. Furthermore, the flexibility of the transceiver clocking architecture allows you to implement multiple protocols while fully utilizing all available transceiver resources. The integration and flexibility of the Cyclone® IV GX FPGA enables you to design in a smaller, cost optimized device, lowering your total system costs.
Reduce Power Consumption
Built on an optimized 60-nm low-power process, Cyclone® IV E FPGA extend the low-power leadership of previous-generation Cyclone® III FPGA. Cyclone® IV E FPGA reduce core voltage, which lower total power by 25 percent compared to the predecessor. With Cyclone® IV GX transceiver FPGA, you can build a PCI Express* to Gigabit Ethernet bridge for less than 1.5 watts.
Cyclone® IV FPGA are optimized for the lowest power consumption, helping you better manage thermal requirements. As a result, you can reduce or eliminate system cooling costs and also extend battery life for handheld applications.
Cyclone® IV FPGA Power Consumption
The Cyclone® IV FPGA family demonstrates Intel’s leadership in offering power-efficient FPGA. With enhanced architecture and silicon, advanced semiconductor process technology and power management tools, power consumption for Cyclone® IV FPGA has been reduced by up to 25 percent compared to Cyclone® III FPGA.
The following figure shows the static power consumption of Cyclone® IV E devices at 85°C junction temperature. The smallest Cyclone® IV EP4CE6 device consumes as little as 38 mW at 85°C and the largest Cyclone® IV EP4CE115 device consumes as little as 163 mW static power at 85°C.
Benefits of Low Power Consumption
Reducing the power consumption of programmable logic devices carries far-reaching benefits for many applications. However, lower power consumption is only one aspect of system power. The following figure shows that Cyclone® IV GX FPGA lower FPGA power consumption by an average of 30 percent.
Silicon and Architectural Optimizations
Static power can increase dramatically with the sub-micron semiconductor process if no power-reduction strategies are employed. Static power consumption rises at submicron process technologies largely because of increases in leakage current subthreshold leakage.
By employing a low-power (LP) process technology traditionally used by major semiconductor manufacturers for handset components, Intel has minimized the leakage current for low static power. The smaller geometries made possible by this advanced process, combined with architectural optimizations, enable Cyclone® IV FPGA to keep dynamic and static power consumption to a minimum. The process and architectural enhancements that Intel employs with Cyclone® IV FPGA includes the use of low-k dielectrics, variable channel lengths and oxide thicknesses and multiple transistor threshold voltages.
Accurate Power Estimation and Analysis
Intel supports power estimation and analysis, from design concept through implementation, with the most accurate and complete power management design tools. Intel offers up to 125°C and worst-case silicon power estimates for the low-cost FPGA families throughout its tool suite. Intel offers the following power estimation and analysis resources:
- Cyclone® IV early power estimator.
- Quartus® Prime power analysis and optimization technology.
- Power Management Resource Center.
Use the early power estimator (EPE) during the design concept phase and the Power Analyzer during design implementation. The EPE is a spreadsheet-based analysis tool that enables early power scoping based on device and package selection, operating conditions and device utilization.
The Power Analyzer is a far more detailed power analysis tool that uses actual design placement and routing and logic configuration. The tool can use simulated waveforms to very accurately estimate dynamic power. The power analyzer, in aggregate, usually provides ± 10 percent accuracy when used with accurate design information. The Quartus® Prime power models closely correlate to actual silicon measurements.
Intel uses more than 5,000 different test configurations to measure the power of individual components within an Cyclone® series FPGA. Each configuration is focused on measuring a single circuit component of the FPGA in a specific configuration.
Quartus® Prime Power Optimization
Design implementation details can improve performance, minimize area and reduce power. Historically, the performance and area trade-offs have been automated within the register transfer level (RTL) through the place-and-route design flow.
Quartus® Prime software power optimization tools automatically use the Cyclone® IV FPGA architecture capabilities to reduce up to 25 percent lower dynamic power consumption compared to Cyclone® III FPGA.
The Quartus® Prime development software has many automatic power optimizations that are transparent to the designer but provide optimal utilization of the FPGA architecture to minimize power. For example, with Quartus® Prime software, you can:
- Transform major functional blocks.
- Map user RAMs so they use less power.
- Restructure logic to reduce dynamic power.
- Correctly select logic inputs to minimize capacitance on high-toggling nets.
- Reduce area and wiring demand for core logic to minimize dynamic power in routing.
- Modify placement to reduce clocking power.
Additional Resources
Explore more content related to Altera® FPGA devices such as development boards, intellectual property, support and more.
Support Resources
Resource center for training, documentation, downloads, tools and support options.
Development Boards
Get started with our FPGA and accelerate your time-to-market with Altera-validated hardware and designs.
Intellectual Property
Shorten your design cycle with a broad portfolio of Altera-validated IP cores and reference designs.
FPGA Design Software
Explore Quartus Prime Software and our suite of productivity-enhancing tools to help you rapidly complete your hardware and software designs.
Contact Sales
Get in touch with sales for your Altera® FPGA product design and acceleration needs.
Where to Buy
Contact an Altera® Authorized Distributor today.