Visible to Intel only — GUID: bhc1410932259771
Ixiasoft
1. About Triple-Speed Ethernet Intel® FPGA IP for Agilex™ 5 devices
2. Getting Started
3. Parameter Settings
4. Functional Description
5. Configuration Register Space
6. Interface Signals
7. Design Considerations
8. Timing Constraints
9. Testbench
10. Triple-Speed Ethernet Intel® FPGA IP User Guide Archives
11. Document Revision History for the Triple-Speed Ethernet Intel® FPGA IP User Guide: Agilex™ 5 FPGAs and SoCs
A. Ethernet Frame Format
B. Simulation Parameters
4.1.1. MAC Architecture
4.1.2. MAC Interfaces
4.1.3. MAC Transmit Datapath
4.1.4. MAC Receive Datapath
4.1.5. MAC Transmit and Receive Latencies
4.1.6. FIFO Buffer Thresholds
4.1.7. Congestion and Flow Control
4.1.8. Magic Packets
4.1.9. MAC Local Loopback
4.1.10. MAC Reset
4.1.11. PHY Management (MDIO)
4.1.12. Connecting MAC to External PHYs
6.1.1. 10/100/1000 Ethernet MAC Signals
6.1.2. 10/100/1000 Multiport Ethernet MAC Signals
6.1.3. 10/100/1000 Ethernet MAC with 1000BASE-X/SGMII PCS Signals
6.1.4. 10/100/1000 Ethernet MAC with Internal FIFO Buffers, and 1000BASE-X/SGMII 2XTBI PCS with Embedded PMA (GTS) Signals
6.1.5. 10/100/1000 Multiport Ethernet MAC with 1000BASE-X/SGMII PCS Signals
6.1.6. 1000BASE-X/SGMII PCS Signals
6.1.7. 1000BASE-X/SGMII 2XTBI PCS Signals
6.1.8. 10/100/1000 Ethernet MAC with 1000BASE-X/SGMII PCS and Embedded PMA (LVDS) Signals
6.1.9. 10/100/1000 Multiport Ethernet MAC with 1000BASE-X/SGMII PCS and Embedded PMA (LVDS) Signals
6.1.1.1. Clock and Reset Signals
6.1.1.2. Clock Enabler Signals
6.1.1.3. MAC Control Interface Signals
6.1.1.4. MAC Status Signals
6.1.1.5. MAC Receive Interface Signals
6.1.1.6. MAC Transmit Interface Signals
6.1.1.7. Pause and Magic Packet Signals
6.1.1.8. MII/GMII/RGMII Signals
6.1.1.9. PHY Management Signals
Visible to Intel only — GUID: bhc1410932259771
Ixiasoft
A.2. VLAN and Stacked VLAN Frame Format
The extension of a basic MAC frame is a virtual local area network (VLAN) tagged frame, which contains an additional 4-byte field for the VLAN tag and information between the source address and length/type fields. VLAN tagging is defined by the IEEE Standard 802.1Q. VLAN tagging can identify and separate many groups' network traffic from each other in enterprise and metro networks. Each VLAN group can consist of many users with varied MAC address in different geographical locations of a network. VLAN tagging increases and scales the network performance and add privacy and safety to various groups and customers' network traffic.
VLAN tagged frames have a maximum length of 1522 bytes, excluding the preamble and the SFD fields.
Figure 64. VLAN Tagged MAC Frame Format
In metro Ethernet applications, which require more scalability and security due to the sharing of an Ethernet link by many service providers, MAC frames can be tagged with two consecutive VLAN tags (stacked VLAN). Stacked VLAN frames contain an additional 8-byte field between the source address and client length/type fields, as illustrated.
Figure 65. Stacked VLAN Tagged MAC Frame Format