Visible to Intel only — GUID: sam1412835918956
Ixiasoft
1. Agilex™ 7 M-Series General-Purpose I/O Overview
2. Agilex™ 7 M-Series GPIO-B Banks
3. Agilex™ 7 M-Series HPS I/O Banks
4. Agilex™ 7 M-Series SDM I/O Banks
5. Agilex™ 7 M-Series I/O Troubleshooting Guidelines
6. GPIO Intel® FPGA IP
7. Programmable I/O Features Description
8. Documentation Related to the Agilex™ 7 General-Purpose I/O User Guide: M-Series
9. Agilex™ 7 General-Purpose I/O User Guide: M-Series Archives
10. Document Revision History for the Agilex™ 7 General-Purpose I/O User Guide: M-Series
2.5.1. I/O Standard Placement Restrictions for True Differential I/Os
2.5.2. Placement Restrictions for True Differential and Single-Ended I/O Standards in the Same or Adjacent GPIO-B Bank
2.5.3. VREF Sources and Input Standards Grouping
2.5.4. GPIO-B Pin Restrictions for External Memory Interfaces
2.5.5. RZQ Pin Requirement
2.5.6. I/O Standards Implementation Based on VCCIO_PIO Voltages
2.5.7. I/O Standard Selection and I/O Bank Supply Compatibility Check
2.5.8. Simultaneous Switching Noise
2.5.9. HPS Shared I/O Requirements
2.5.10. Clocking Requirements
2.5.11. SDM Shared I/O Requirements
2.5.12. Unused Pins
2.5.13. VCCIO_PIO Supply for Unused GPIO-B Banks
2.5.14. GPIO-B Pins During Power Sequencing
2.5.15. Drive Strength Requirement for GPIO-B Input Pins
2.5.16. Maximum DC Current Restrictions
2.5.17. 1.05 V, 1.1 V, or 1.2 V I/O Interface Voltage Level Compatibility
2.5.18. Connection to True Differential Signaling Input Buffers During Device Reconfiguration
2.5.19. LVSTL700 I/O Standards Differential Pin Pair Requirements
2.5.20. Implementing a Pseudo Open Drain
2.5.21. Allowed Duration for Using RT OCT
2.5.22. Single-Ended Strobe Signal Differential Pin Pair Restriction
2.5.23. Implementing SLVS-400 Standard at 1.1 V VCCIO_PIO Sub-bank
6.1. Release Information for GPIO Intel® FPGA IP
6.2. Generating the GPIO Intel® FPGA IP
6.3. GPIO Intel® FPGA IP Parameter Settings
6.4. GPIO Intel® FPGA IP Interface Signals
6.5. GPIO Intel® FPGA IP Architecture
6.6. Verifying Resource Utilization and Design Performance
6.7. GPIO Intel® FPGA IP Timing
6.8. GPIO Intel® FPGA IP Design Examples
Visible to Intel only — GUID: sam1412835918956
Ixiasoft
6.7.2. Delay Elements
The Quartus® Prime software does not automatically set delay elements to maximize slack in the I/O timing analysis. To close the timing or maximize slack, set the delay elements manually in the Quartus® Prime settings file (.qsf).
Delay Element | .qsf Assignment |
---|---|
Input Delay Element | set_instance_assignment –to <PIN> -name INPUT_DELAY_CHAIN <0..63> |
Output Delay Element | set_instance_assignment –to <PIN> -name OUTPUT_DELAY_CHAIN <0..15> |
Output Enable Delay Element | set_instance_assignment –to <PIN> -name OE_DELAY_CHAIN <0..15> |
The Agilex™ 7 FPGAs and SoCs Device Data Sheet: M-Series provides information on delay chain specification and offset settings across fast and slow models.
- Fast model—Specifies the delay value when the maximum delay chain offset setting is selected using the fastest process.
- Slow model—Specifies the delay value when the maximum delay chain offset setting is selected using the slowest process within a specific speed grade.
For example, if you assign input delay chain setting to #10 using an Agilex™ 7 M-Series device with -1 speed grade:
- Minimum delay value = 10 * delay specification for fast model / 63 = x ns
- Maximum delay value = 10 * delay specification for -1V slow model / 63 = y ns
The input delay ranges from x ns to y ns when you select -1 device speed grade in your design.
Note: The IOE delay chains are not process, voltage and temperature (PVT) compensated, which means the delay chain value changes across PVT.