Visible to Intel only — GUID: aik1572987599972
Ixiasoft
2.1.1. Directory Structure
2.1.2. Generating the Design
2.1.3. Simulating the E-tile Ethernet IP for Intel Agilex FPGA Design Example Testbench
2.1.4. Compiling the Compilation-Only Project
2.1.5. Compiling and Configuring the Design Example in Hardware
2.1.6. Testing the E-tile Ethernet IP for Intel Agilex FPGA Hardware Design Example
2.2.1.1. Non-PTP 10GE/25GE MAC+PCS with Optional RS-FEC Simulation Design Example
2.2.1.2. PTP 10GE/25GE MAC+PCS with Optional RS-FEC Simulation Design Example
2.2.1.3. 10GE/25GE PCS Only, OTN, or FlexE with Optional RS-FEC Simulation Design Example
2.2.1.4. 10GE/25GE Custom PCS with Optional RS-FEC Simulation Design Example
2.3.1. Simulation Design Examples
2.3.2. Hardware Design Examples
2.3.3. 100GE MAC+PCS with Optional RS-FEC Design Example Interface Signals
2.3.4. 100GE PCS with Optional RS-FEC Design Example Interface Signals
2.3.5. 100GE MAC+PCS with Optional RS-FEC Design Example Registers
2.3.6. 100GE PCS with Optional RS-FEC Design Example Registers
2.3.1.1. Non-PTP E-tile Ethernet IP for Intel Agilex FPGA 100GE MAC+PCS with Optional RS-FEC Simulation Design Example
2.3.1.2. E-tile Ethernet IP for Intel Agilex FPGA 100GE MAC+PCS with Optional RS-FEC and PTP Simulation Design Example
2.3.1.3. E-tile Ethernet IP for Intel Agilex FPGA 100GE PCS Only with Optional RS-FEC Simulation Design Example
2.3.1.4. E-tile Ethernet IP for Intel Agilex FPGA 100GE OTN with Optional RS-FEC Simulation Design Example
2.3.1.5. E-tile Ethernet IP for Intel Agilex FPGA 100GE FlexE with Optional RS-FEC Simulation Design Example
3.1.1. Hardware and Software Requirements
3.1.2. Generating the Design
3.1.3. Directory Structure
3.1.4. Simulating the Design Example Testbench
3.1.5. Compiling the Compilation-Only Project
3.1.6. Compiling and Configuring the Design Example in Hardware
3.1.7. Testing the E-tile CPRI PHY Intel® FPGA IP Hardware Design Example
4.1. Quick Start Guide
4.2. 10G/25G Ethernet Dynamic Reconfiguration Design Examples
4.3. 25G Ethernet to CPRI Dynamic Reconfiguration Design Example
4.4. CPRI Dynamic Reconfiguration Design Examples
4.5. 100G Ethernet Dynamic Reconfiguration Design Example
4.6. Document Revision History for the E-tile Dynamic Reconfiguration Design Example
4.5.1. Functional Description
4.5.2. Testing the 100G Ethernet Dynamic Reconfiguration Hardware Design Example
4.5.3. Simulation Design Examples
4.5.4. 100GE DR Hardware Design Examples
4.5.5. 100G Ethernet Dynamic Reconfiguration Design Example Interface Signals
4.5.6. 100G Ethernet Dynamic Reconfiguration Examples Registers
Visible to Intel only — GUID: aik1572987599972
Ixiasoft
3.2.2. Simulation Design Example
The E-tile CPRI PHY design example generates a simulation testbench and simulation files that instantiates the E-tile CPRI PHY Intel® FPGA IP core when you select the Simulation option.
Figure 23. E-tile CPRI PHY Intel® FPGA IP for 10.1316, 12.1651, and 24.33024 Gbps (with and without RS-FEC) Line Rates
Figure 24. E-tile CPRI PHY Intel® FPGA IP for 2.4376, 3.0720, 4.9152, 6.144, 9.8304 Gbps Line Rates
In this design example, the simulation testbench provides basic functionality such as startup and wait for lock, transmit and receive packets.
The successful test run displays output confirming the following behavior:
- The client logic resets the IP core.
- The client logic waits for the RX datapath alignment.
- The client logic transmits hyperframes on the TX MII interface and waits for five hyperframes to be received on RX MII interface. Hyperframes are transmitted and received on MII interface according to the CPRI v7.0 specifications.
Note: The CPRI designs that target 2.4/3/4.9/6.1/9.8 Gbps line rates use 8b/10b interface and the designs that target 10.1, 12.1 and 24.3 Gbps (with and without RS-FEC) use MII interface.Note: This design example includes a round trip counter to count the round trip latency from TX to RX.
- The client logic reads the round trip latency value and checks for the content and correctness of the hyperframes data on the RX MII side once the counter completes the round trip latency count.
Related Information