Visible to Intel only — GUID: mbb1521532621159
Ixiasoft
1. Intel Agilex® 7 Configuration User Guide
2. Intel Agilex® 7 Configuration Details
3. Intel Agilex® 7 Configuration Schemes
4. Including the Reset Release Intel® FPGA IP in Your Design
5. Remote System Update (RSU)
6. Intel Agilex® 7 Configuration Features
7. Intel Agilex® 7 Debugging Guide
8. Intel Agilex® 7 Configuration User Guide Archives
9. Document Revision History for the Intel Agilex® 7 Configuration User Guide
2.1. Intel Agilex® 7 Configuration Timing Diagram
2.2. Configuration Flow Diagram
2.3. Device Response to Configuration and Reset Events
2.4. Additional Clock Requirements for HPS and Transceivers
2.5. Intel Agilex® 7 Configuration Pins
2.6. Configuration Clocks
2.7. Intel Agilex® 7 Configuration Time Estimation
2.8. Generating Compressed .sof File
3.1.1. Avalon® -ST Configuration Scheme Hardware Components and File Types
3.1.2. Enabling Avalon-ST Device Configuration
3.1.3. The AVST_READY Signal
3.1.4. RBF Configuration File Format
3.1.5. Avalon-ST Single-Device Configuration
3.1.6. Debugging Guidelines for the Avalon® -ST Configuration Scheme
3.1.7. IP for Use with the Avalon® -ST Configuration Scheme: Parallel Flash Loader II Intel® FPGA IP Core
3.1.7.4.1. PFL II IP Recommended Design Constraints to FPGA Avalon-ST Pins
3.1.7.4.2. PFL II IP Recommended Design Constraints for Using QSPI Flash
3.1.7.4.3. PFL II IP Recommended Design Constraints for using CFI Flash
3.1.7.4.4. PFL II IP Recommended Constraints for Other Input Pins
3.1.7.4.5. PFL II IP Recommended Constraints for Other Output Pins
3.2.1. AS Configuration Scheme Hardware Components and File Types
3.2.2. AS Single-Device Configuration
3.2.3. AS Using Multiple Serial Flash Devices
3.2.4. AS Configuration Timing Parameters
3.2.5. Skew Tolerance Guidelines
3.2.6. Programming Serial Flash Devices
3.2.7. Serial Flash Memory Layout
3.2.8. AS_CLK
3.2.9. Active Serial Configuration Software Settings
3.2.10. Intel® Quartus® Prime Programming Steps
3.2.11. Debugging Guidelines for the AS Configuration Scheme
5.1. Remote System Update Functional Description
5.2. Guidelines for Performing Remote System Update Functions for Non-HPS
5.3. Commands and Responses
5.4. Quad SPI Flash Layout
5.5. Generating Remote System Update Image Files Using the Programming File Generator
5.6. Remote System Update from FPGA Core Example
5.7. Debugging Guidelines for RSU Configuration
5.6.1. Prerequisites
5.6.2. Creating Initial Flash Image Containing Bitstreams for Factory Image and One Application Image
5.6.3. Programming Flash Memory with the Initial Remote System Update Image
5.6.4. Reconfiguring the Device with an Application or Factory Image
5.6.5. Adding an Application Image
5.6.6. Removing an Application Image
7.1. Configuration Debugging Checklist
7.2. Intel Agilex® 7 Configuration Architecture Overview
7.3. Understanding Configuration Status Using quartus_pgm command
7.4. Configuration File Format Differences
7.5. Understanding SEUs
7.6. Reading the Unique 64-Bit CHIP ID
7.7. E-Tile Transceivers May Fail To Configure
7.8. Understanding and Troubleshooting Configuration Pin Behavior
Visible to Intel only — GUID: mbb1521532621159
Ixiasoft
5.1.4. Remote System Update Configuration Sequence
Figure 70. Remote System Update Configuration Sequence
In the following figure the blue text are states shown in the Configuration Flow Diagram.
Reconfiguration includes the following steps:
- After the device exits power-on-reset (POR), the boot ROM loads flash memory from the first valid decision firmware from one of the copies at addresses 0, 512 K, 1024 K, or 1536 K to initialize the SDM. The same configuration firmware is present in each of these locations. This firmware is part of the initial RSU flash image. ( Refer to Step 2 of Guidelines for Performing Remote System Update Functions for Non-HPS for step-by-step details for programming the initial RSU flash image into the flash.)
If you trigger the reconfiguration with a pulse of nCONFIG low, the SDM loads the decision firmware.
- The optional Direct to Factory Image pin controls whether the SDM firmware loads the factory or application image. You can assign the Direct to Factory Image input to any unused SDM pin. The SDM loads the application image if you do not assign this pin.
- The configuration pointer block in the flash device maintains a list of pointers to the application images.
- When loading an application image, the SDM traverses the pointer block in reverse order. The SDM loads the highest priority image. When image loading completes, the device enters user mode.
- If loading the application image is unsuccessful, the next image that the SDM loads has dependency on the direct factory image fallback setting. Note that this setting is not enabled by default.
- If direct factory image fallback is disabled, the SDM loads the next highest priority application image from the address in the configuration pointer block. If the SDM fails to load all application images, the SDM loads the factory image.
- If direct factory image fallback is enabled, the SDM loads the factory image. If the device is running in user mode and you manually load an application image but it fails, the SDM loads the factory image as well.
- If loading the factory image fails due to factory image corruption, you can recover by reprogramming the quad SPI flash with the initial RSU flash image using the JTAG interface.
Note: For every unsuccessful configuration, the nSTATUS asserts a low pulse to indicate configuration failure and the SDM proceeds to load the next image automatically. Do not assert nCONFIG low to attempt to load the next application image.
- During the remote update to other application image or factory image, the SDM loads the decision firmware.
Note:
You must keep nCONFIG high until the device enters the user mode.
- Keep the nCONFIG signal high after the device powers up and throughout the entire device configuration to load an application or factory image.
- Keep the nCONFIG signal high during the remote update to other application image or factory image by using the RSU_IMAGE_UPDATE command.
You drive nCONFIG low only when the device is in user mode to trigger the reconfiguration.