Visible to Intel only — GUID: mwh1409960096878
Ixiasoft
Answers to Top FAQs
1. Design Optimization Overview
2. Optimizing the Design Netlist
3. Netlist Optimizations and Physical Synthesis
4. Area Optimization
5. Timing Closure and Optimization
6. Analyzing and Optimizing the Design Floorplan
7. Using the ECO Compilation Flow
8. Quartus® Prime Pro Edition Design Optimization User Guide Archives
A. Quartus® Prime Pro Edition User Guides
2.1. When to Use the Netlist Viewers: Analyzing Design Problems
2.2. Quartus® Prime Design Flow with the Netlist Viewers
2.3. RTL Viewer Overview
2.4. Technology Map Viewer Overview
2.5. Netlist Viewer User Interface
2.6. Schematic View
2.7. Cross-Probing to a Source Design File and Other Quartus® Prime Windows
2.8. Cross-Probing to the Netlist Viewers from Other Quartus® Prime Windows
2.9. Viewing a Timing Path
2.10. Optimizing the Design Netlist Revision History
2.6.1. Display Schematics in Multiple Tabbed View
2.6.2. Schematic Symbols
2.6.3. Select Items in the Schematic View
2.6.4. Shortcut Menu Commands in the Schematic View
2.6.5. Filtering in the Schematic View
2.6.6. View Contents of Nodes in the Schematic View
2.6.7. Moving Nodes in the Schematic View
2.6.8. View LUT Representations in the Technology Map Viewer
2.6.9. Zoom Controls
2.6.10. Navigating with the Bird's Eye View
2.6.11. Partition the Schematic into Pages
2.6.12. Follow Nets Across Schematic Pages
4.2.3.1. Guideline: Optimize Source Code
4.2.3.2. Guideline: Optimize Synthesis for Area, Not Speed
4.2.3.3. Guideline: Restructure Multiplexers
4.2.3.4. Guideline: Perform WYSIWYG Primitive Resynthesis with Balanced or Area Setting
4.2.3.5. Guideline: Use Register Packing
4.2.3.6. Guideline: Remove Fitter Constraints
4.2.3.7. Guideline: Flatten the Hierarchy During Synthesis
4.2.3.8. Guideline: Re-target Memory Blocks
4.2.3.9. Guideline: Use Physical Synthesis Options to Reduce Area
4.2.3.10. Guideline: Retarget or Balance DSP Blocks
4.2.3.11. Guideline: Use a Larger Device
4.2.3.12. Guideline: Reduce Global Signal Congestion
4.2.3.13. Guideline: Report Pipelining Information
4.2.4.1. Guideline: Set Auto Packed Registers to Sparse or Sparse Auto
4.2.4.2. Guideline: Set Fitter Aggressive Routability Optimizations to Always
4.2.4.3. Guideline: Increase Router Effort Multiplier
4.2.4.4. Guideline: Remove Fitter Constraints
4.2.4.5. Guideline: Optimize Synthesis for Routability
4.2.4.6. Guideline: Optimize Source Code
4.2.4.7. Guideline: Use a Larger Device
5.1. Optimize Multi Corner Timing
5.2. Optimize Critical Paths
5.3. Optimize Critical Chains
5.4. Design Evaluation for Timing Closure
5.5. Timing Optimization
5.6. Periphery to Core Register Placement and Routing Optimization
5.7. Scripting Support
5.8. Timing Closure and Optimization Revision History
5.5.1. Correct Design Assistant Rule Violations
5.5.2. Implement Fast Forward Timing Closure Recommendations
5.5.3. Review Timing Path Details
5.5.4. Try Optional Fitter Settings
5.5.5. Back-Annotating Optimized Assignments
5.5.6. Optimize Settings with Design Space Explorer II
5.5.7. Aggregating and Comparing Compilation Results with Exploration Dashboard
5.5.8. I/O Timing Optimization Techniques
5.5.9. Register-to-Register Timing Optimization Techniques
5.5.10. Metastability Analysis and Optimization Techniques
5.5.3.1. Report Timing
5.5.3.2. Report Logic Depth
5.5.3.3. Report Neighbor Paths
5.5.3.4. Report Register Spread
5.5.3.5. Report Route Net of Interest
5.5.3.6. Report Retiming Restrictions
5.5.3.7. Report Pipelining Information
5.5.3.8. Report CDC Viewer
5.5.3.9. Timing Closure Recommendations
5.5.3.10. Global Network Buffers
5.5.3.11. Resets and Global Networks
5.5.3.12. Suspicious Setup
5.5.3.13. Auto Shift Register Replacement
5.5.3.14. Clocking Architecture
5.5.8.1. I/O Timing Constraints
5.5.8.2. Optimize IOC Register Placement for Timing Logic Option
5.5.8.3. Fast Input, Output, and Output Enable Registers
5.5.8.4. Programmable Delays
5.5.8.5. Use PLLs to Shift Clock Edges
5.5.8.6. Use Fast Regional Clock Networks and Regional Clocks Networks
5.5.8.7. Spine Clock Limitations
5.5.9.1. Optimize Source Code
5.5.9.2. Improving Register-to-Register Timing
5.5.9.3. Physical Synthesis Optimizations
5.5.9.4. Set Power Optimization During Synthesis to Normal Compilation
5.5.9.5. Optimize Synthesis for Performance, Not Area
5.5.9.6. Flatten the Hierarchy During Synthesis
5.5.9.7. Set the Synthesis Effort to High
5.5.9.8. Change Adder Tree Styles
5.5.9.9. Duplicate Registers for Fan-Out Control
5.5.9.10. Prevent Shift Register Inference
5.5.9.11. Use Other Synthesis Options Available in Your Synthesis Tool
5.5.9.12. Fitter Seed
5.5.9.13. Set Maximum Router Timing Optimization Level
5.5.9.14. Register-to-Register Timing Analysis
5.5.9.14.1. Tips for Analyzing Failing Paths
5.5.9.14.2. Tips for Analyzing Failing Clock Paths that Cross Clock Domains
5.5.9.14.3. Tips for Critical Path Analysis
5.5.9.14.4. Tips for Creating a .tcl Script to Monitor Critical Paths Across Compiles
5.5.9.14.5. Global Routing Resources
5.5.9.14.6. Register RAMS and DSPs
6.1. Location Assignment Optimization Guidelines
6.2. Design Floorplan Analysis in Chip Planner
6.3. Defining Logic Lock Placement Constraints
6.4. Defining Virtual Pins
6.5. Using Logic Lock Regions in Combination with Design Partitions
6.6. Creating Clock Region Assignments in Chip Planner
6.7. Scripting Support
6.8. Analyzing and Optimizing the Design Floorplan Revision History
6.2.1. Starting the Chip Planner
6.2.2. Chip Planner GUI
6.2.3. Viewing Design Elements in Chip Planner
6.2.4. Finding Design Elements in the Chip Planner
6.2.5. Exploring Paths in the Chip Planner
6.2.6. Viewing Assignments in the Chip Planner
6.2.7. Viewing High-Speed and Low-Power Tiles in the Chip Planner
6.2.8. Viewing Design Partition Placement
6.2.3.1. Viewing Architecture-Specific Design Information in Chip Planner
6.2.3.2. Viewing Available Clock Networks in Chip Planner
6.2.3.3. Viewing Clock Sector Utilization in Chip Planner
6.2.3.4. Viewing Routing Congestion in Chip Planner
6.2.3.5. Viewing I/O Banks in Chip Planner
6.2.3.6. Viewing High-Speed Serial Interfaces (HSSI) in Chip Planner
6.2.3.7. Viewing Source and Destination Nodes in Chip Planner
6.2.3.8. Viewing Fan-In and Fan-Out in Chip Planner
6.2.3.9. Viewing Immediate Fan-In and Fan-Out in Chip Planner
6.2.3.10. Viewing the Selected Contents in Chip Planner
6.2.3.11. Viewing the Location and Utilization of Device Resources in Chip Planner
6.2.3.12. Viewing Module Placement by Cross-Probing to Chip Planner
6.3.1. The Logic Lock Regions Window
6.3.2. Defining Logic Lock Regions
6.3.3. Customizing the Shape of Logic Lock Regions
6.3.4. Assigning Device Pins to Logic Lock Regions
6.3.5. Viewing Connections Between Logic Lock Regions in Chip Planner
6.3.6. Example: Placement Best Practices for Arria® 10 FPGAs
6.3.7. Migrating Assignments between Quartus® Prime Standard Edition and Quartus® Prime Pro Edition
7.4.1. ECO Command Quick Reference
7.4.2. make_connection
7.4.3. remove_connection
7.4.4. modify_lutmask
7.4.5. adjust_pll_refclk
7.4.6. modify_io_slew_rate
7.4.7. modify_io_current_strength
7.4.8. modify_io_delay_chain
7.4.9. create_new_node
7.4.10. remove_node
7.4.11. place_node
7.4.12. unplace_node
7.4.13. create_wirelut
Visible to Intel only — GUID: mwh1409960096878
Ixiasoft
2.5. Netlist Viewer User Interface
The Netlist Viewer is a graphical user-interface for viewing and manipulating nodes and nets in the netlist.
The RTL Viewer and Technology Map Viewer each consist of these main parts:
- The Netlist Navigator pane—displays a representation of the project hierarchy.
- The Find pane—allows you to find and locate specific design elements in the schematic view.
- The Properties pane—displays the properties of the selected block when you select Properties from the shortcut menu.
- The schematic view—displays a graphical representation of the internal structure of the design.
Figure 8. RTL Viewer
Netlist Viewers also contain a toolbar that provides tools to use in the schematic view.
- Use the Back and Forward buttons to switch between schematic views.
- Click the Next Page or Previous Page buttons to navigate directly to the next or previous page, respectively. These buttons are helpful when a long schematic partitions to multiple pages.
- The Refresh button to restore the schematic view and optimizes the layout. Refresh does not reload the database if you change the design and recompile.
- Click the Find button opens and closes the Find pane.
- Click the Selection Tool and Zoom Tool buttons to alternate between the selection mode and zoom mode.
- Click the Fit in Window button resets the schematic view to encompass the entire design.
- Click the Fit Selection in Window button resets the schematic view to encompass the entire selection.
- Use the Hand Tool to change the focus of the viewer without changing the perspective.
- Click the Area Selection Tool to drag a selection box around ports, pins, and nodes in an area.
- Click the Netlist Navigator button to open or close the Netlist Navigator pane.
- Click the Color Settings button to open the Colors pane where you can customize the Netlist Viewer color scheme.
Figure 9. Display Settings
- Click the Display Settings button to open the Display pane where you can specify the following settings:
- Show full name or Show only <n> characters. You can specify this separately for Node name, Port name, Pin name, or Bus index name.
- Turn Show timing info on or off.
- Turn Show node type on or off.
- Turn Show constant value on or off.
- Turn Show flat nets on or off.
- Turn Maintain selection when expand hierarchy on or off.
- Turn Enable rollover on or off.
- Turn Show located objects in new tab on or off.
- The Bird's Eye View button opens the Bird's Eye View window which displays a miniature version of the design and allows you to navigate within the design and adjust the magnification in the schematic view quickly.
- The Show/Hide Instance Pins button can alternate the display of instance pins not displayed by functions such as cross-probing between a Netlist Viewer and Timing Analyzer. You can also use this button to hide unconnected instance pins when filtering a node results in large numbers of unconnected or unused pins. The Netlist Viewer hides Instance pins by default.
- If the Netlist Viewer display encompasses several pages, the Show Netlist on One Page button resizes the netlist view to a single page. This action can make netlist tracing easier.
- Click the Highlight list to apply a highlight color to the objects that you select in the schematic. Unhighlight objects with Unhighlight or Unhighlight All from the right-click menu.
You can have only one RTL Viewer, one Technology Map Viewer (Post-Fitting), and one Technology Map Viewer (Post-Mapping) window open at the same time, although each window can show multiple pages, each with multiple tabs. For example, you cannot have two RTL Viewer windows open at the same time.