Visible to Intel only — GUID: ewa1398097937428
Ixiasoft
Product Discontinuance Notification
1. Introduction to Intel® FPGA SDK for OpenCL™ Pro Edition Best Practices Guide
2. Reviewing Your Kernel's report.html File
3. OpenCL Kernel Design Concepts
4. OpenCL Kernel Design Best Practices
5. Profiling Your Kernel to Identify Performance Bottlenecks
6. Strategies for Improving Single Work-Item Kernel Performance
7. Strategies for Improving NDRange Kernel Data Processing Efficiency
8. Strategies for Improving Memory Access Efficiency
9. Strategies for Optimizing FPGA Area Usage
10. Strategies for Optimizing Intel® Stratix® 10 OpenCL Designs
11. Strategies for Improving Performance in Your Host Application
12. Intel® FPGA SDK for OpenCL™ Pro Edition Best Practices Guide Archives
A. Document Revision History for the Intel® FPGA SDK for OpenCL™ Pro Edition Best Practices Guide
2.1. High-Level Design Report Layout
2.2. Reviewing the Summary Report
2.3. Viewing Throughput Bottlenecks in the Design
2.4. Using Views
2.5. Analyzing Throughput
2.6. Reviewing Area Information
2.7. Optimizing an OpenCL Design Example Based on Information in the HTML Report
2.8. Accessing HLD FPGA Reports in JSON Format
4.1. Transferring Data Via Intel® FPGA SDK for OpenCL™ Channels or OpenCL Pipes
4.2. Unrolling Loops
4.3. Optimizing Floating-Point Operations
4.4. Allocating Aligned Memory
4.5. Aligning a Struct with or without Padding
4.6. Maintaining Similar Structures for Vector Type Elements
4.7. Avoiding Pointer Aliasing
4.8. Avoid Expensive Functions
4.9. Avoiding Work-Item ID-Dependent Backward Branching
5.1. Best Practices for Profiling Your Kernel
5.2. Instrumenting the Kernel Pipeline with Performance Counters (-profile)
5.3. Obtaining Profiling Data During Runtime
5.4. Reducing Area Resource Use While Profiling
5.5. Temporal Performance Collection
5.6. Performance Data Types
5.7. Interpreting the Profiling Information
5.8. Profiler Analyses of Example OpenCL Design Scenarios
5.9. Intel® FPGA Dynamic Profiler for OpenCL™ Limitations
8.1. General Guidelines on Optimizing Memory Accesses
8.2. Optimize Global Memory Accesses
8.3. Performing Kernel Computations Using Constant, Local or Private Memory
8.4. Improving Kernel Performance by Banking the Local Memory
8.5. Optimizing Accesses to Local Memory by Controlling the Memory Replication Factor
8.6. Minimizing the Memory Dependencies for Loop Pipelining
8.7. Static Memory Coalescing
Visible to Intel only — GUID: ewa1398097937428
Ixiasoft
9.4. Arithmetic Operation Considerations
Select the appropriate arithmetic operation for your OpenCL™ application to avoid excessive FPGA area usage.
- Introduce floating-point arithmetic operations only when necessary.
- The Intel® FPGA SDK for OpenCL™ Offline Compiler defaults floating-point constants to double data type. Add an f designation to the constant to make it a single precision floating-point operation.
For example, the arithmetic operation sin(1.0) represents a double precision floating-point sine function. The arithmetic operation sin(1.0f) represents a single precision floating-point sine function.
- If you do not require full precision result for a complex function, compute simpler arithmetic operations to approximate the result. Consider the following example scenarios:
- Instead of computing the function pow(x,n) where n is a small value, approximate the result by performing repeated squaring operations because they require much less hardware resources and area.
- Ensure you are aware of the original and approximated area usages because in some cases, computing a result via approximation might result in excess area usage. For example, the sqrt function is not resource-intensive. Other than a rough approximation, replacing the sqrt function with arithmetic operations that the host has to compute at runtime might result in larger area usage.
- If you work with a small set of input values, consider using a LUT instead.
- If your kernel performs a complex arithmetic operation with a constant that the offline compiler computes at compilation time (for example, log(PI/2.0)), perform the arithmetic operation on the host instead and pass the result as an argument to the kernel at runtime.