Visible to Intel only — GUID: jqd1613595156153
Ixiasoft
1. About the R-tile Avalon® Streaming Intel® FPGA IP for PCI Express
2. IP Architecture and Functional Description
3. Advanced Features
4. Interfaces
5. Parameters
6. R-Tile Avalon® Streaming Intel® FPGA IP for PCI Express* User Guide Archives
7. Document Revision History for the R-tile Avalon® Streaming Intel FPGA IP for PCI Express User Guide
A. Configuration Space Registers
B. Root Port Enumeration
C. Implementation of Address Translation Services (ATS) in Endpoint Mode
D. Packets Forwarded to the User Application in TLP Bypass Mode
3.2.2.5.1. VirtIO Common Configuration Capability Register (Address: 0x012)
3.2.2.5.2. VirtIO Common Configuration BAR Indicator Register (Address: 0x013)
3.2.2.5.3. VirtIO Common Configuration BAR Offset Register (Address: 0x014)
3.2.2.5.4. VirtIO Common Configuration Structure Length Register (Address 0x015)
3.2.2.5.5. VirtIO Notifications Capability Register (Address: 0x016)
3.2.2.5.6. VirtIO Notifications BAR Indicator Register (Address: 0x017)
3.2.2.5.7. VirtIO Notifications BAR Offset Register (Address: 0x018)
3.2.2.5.8. VirtIO Notifications Structure Length Register (Address: 0x019)
3.2.2.5.9. VirtIO Notifications Notify Off Multiplier Register (Address: 0x01A)
3.2.2.5.10. VirtIO ISR Status Capability Register (Address: 0x02F)
3.2.2.5.11. VirtIO ISR Status BAR Indicator Register (Address: 0x030)
3.2.2.5.12. VirtIO ISR Status BAR Offset Register (Address: 0x031)
3.2.2.5.13. VirtIO ISR Status Structure Length Register (Address: 0x032)
3.2.2.5.14. VirtIO Device Specific Capability Register (Address: 0x033)
3.2.2.5.15. VirtIO Device Specific BAR Indicator Register (Address: 0x034)
3.2.2.5.16. VirtIO Device Specific BAR Offset Register (Address 0x035)
3.2.2.5.17. VirtIO Device Specific Structure Length Register (Address: 0x036)
3.2.2.5.18. VirtIO PCI Configuration Access Capability Register (Address: 0x037)
3.2.2.5.19. VirtIO PCI Configuration Access BAR Indicator Register (Address: 0x038)
3.2.2.5.20. VirtIO PCI Configuration Access BAR Offset Register (Address: 0x039)
3.2.2.5.21. VirtIO PCI Configuration Access Structure Length Register (Address: 0x03A)
3.2.2.5.22. VirtIO PCI Configuration Access Data Register (Address: 0x03B)
4.4.1. Avalon® Streaming Interface
4.4.2. Precision Time Measurement (PTM) Interface (Endpoint Only)
4.4.3. Interrupt Interface
4.4.4. Hard IP Reconfiguration Interface
4.4.5. Error Interface
4.4.6. Completion Timeout Interface
4.4.7. Configuration Intercept Interface
4.4.8. Power Management Interface
4.4.9. Hard IP Status Interface
4.4.10. Page Request Services (PRS) Interface (Endpoint Only)
4.4.11. Function-Level Reset (FLR) Interface (Endpoint Only)
4.4.12. SR-IOV VF Error Flag Interface (Endpoint Only)
4.4.13. General Purpose VSEC Interface
5.2.3.1. Device Capabilities
5.2.3.2. VirtIO Parameters
5.2.3.3. Link Capabilities
5.2.3.4. Legacy Interrupt Pin Register
5.2.3.5. MSI Capabilities
5.2.3.6. MSI-X Capabilities
5.2.3.7. Slot Capabilities
5.2.3.8. Latency Tolerance Reporting (LTR)
5.2.3.9. Process Address Space ID (PASID)
5.2.3.10. Device Serial Number Capability
5.2.3.11. Page Request Service (PRS)
5.2.3.12. Access Control Service (ACS)
5.2.3.13. Power Management
5.2.3.14. Vendor Specific Extended Capability (VSEC) Registers
5.2.3.15. TLP Processing Hints (TPH)
5.2.3.16. Address Translation Services (ATS) Capabilities
5.2.3.17. Precision Time Management (PTM)
Visible to Intel only — GUID: jqd1613595156153
Ixiasoft
2.3.2. Reset
There is only one PERST# (pin_perst_n) pin on R-tile. Therefore, toggling pin_perst_n will affect the entire R-tile. If the R-tile x16 port is bifurcated into two x8 Endpoints, toggling pin_perst_n will affect both x8 Endpoints. To reset each port individually, use the in-band mechanism such as Hot Reset and the Function-Level Reset (FLR). Following are the guidelines for implementing the R-tile pin_perst_n reset signal:
- pin_perst_n is a "power good" indicator from the associated power domain (to which R-tile is connected). Also, it shall qualify that both the R-tile refclk0 and refclk1 are stable. If one of the reference clocks becomes stable later, deassert pin_perst_n after this reference clock becomes stable.
- pin_perst_n assertion is required for proper Autonomous R-tile functionality. In Autonomous mode (enabled by default), R-tile can successfully link up upon the release of pin_perst_n regardless of the FPGA fabric configuration and will send out CRS (Configuration Retry Status) until the FPGA fabric is configured and ready.
- To prevent potential device degradation, the pin_perst_n signal must not be held active if power is supplied to the R-tile Avalon® Streaming Intel® FPGA IP for PCI Express when the FPGA is in user mode. If the R-tile Avalon® Streaming Intel® FPGA IP for PCI Express is planned to be used but not in the early phases of your design cycle, you must configure it in BTI mode using the following qsf assignment:
set_global_assignment -name PRESERVE_UNUSED_XCVR_CHANNEL ON
- pin_perst_n assertion should be avoided during a functional-level reset or before a functional-level reset is completed since this could impact the link training process. In case this occurs, a cold reset would be required to properly complete the link training process.
The following is an example where a single PERST# (pin_perst_n) is driven with independent refclk0 and refclk1. In this example, the add-in card (FPGA and Soc) is powered up first. R-tile refclk0 is fed by the on-board free-running oscillator. R-tile refclk1 driven by the Host becomes stable later. Hence, the PERST# is connected to the Host.
Figure 5. Single PERST# Connection in Bifurcated 2x8 Mode