Visible to Intel only — GUID: bhc1410932088401
Ixiasoft
1. About This IP
2. Getting Started with Altera IPs
3. Parameter Settings
4. Functional Description
5. Configuration Register Space
6. Interface Signals
7. Design Considerations
8. Timing Constraints
9. Testbench
10. Software Programming Interface
11. Triple-Speed Ethernet Intel® FPGA IP User Guide Archives
12. Document Revision History for the Triple-Speed Ethernet Intel® FPGA IP User Guide
A. Ethernet Frame Format
B. Simulation Parameters
4.1.1. MAC Architecture
4.1.2. MAC Interfaces
4.1.3. MAC Transmit Datapath
4.1.4. MAC Receive Datapath
4.1.5. MAC Transmit and Receive Latencies
4.1.6. FIFO Buffer Thresholds
4.1.7. Congestion and Flow Control
4.1.8. Magic Packets
4.1.9. MAC Local Loopback
4.1.10. MAC Error Correction Code (ECC)
4.1.11. MAC Reset
4.1.12. PHY Management (MDIO)
4.1.13. Connecting MAC to External PHYs
4.2.1. 1000BASE-X/SGMII PCS Architecture
4.2.2. Transmit Operation
4.2.3. Receive Operation
4.2.4. Transmit and Receive Latencies
4.2.5. GMII Converter
4.2.6. SGMII Converter
4.2.7. Auto-Negotiation
4.2.8. Ten-bit Interface
4.2.9. PHY Loopback
4.2.10. PHY Power-Down
4.2.11. 1000BASE-X/SGMII PCS Reset
5.1.1. Base Configuration Registers (Dword Offset 0x00 – 0x17)
5.1.2. Statistics Counters (Dword Offset 0x18 – 0x38)
5.1.3. Transmit and Receive Command Registers (Dword Offset 0x3A – 0x3B)
5.1.4. Supplementary Address (Dword Offset 0xC0 – 0xC7)
5.1.5. IEEE 1588v2 Feature (Dword Offset 0xD0 – 0xD6)
5.1.6. Deterministic Latency (Dword Offset 0xE1– 0xE3)
5.1.7. IEEE 1588v2 Feature PMA Delay
6.1.1. 10/100/1000 Ethernet MAC Signals
6.1.2. 10/100/1000 Multiport Ethernet MAC Signals
6.1.3. 10/100/1000 Ethernet MAC with 1000BASE-X/SGMII PCS Signals
6.1.4. 10/100/1000 Ethernet MAC with 1000BASE-X/SGMII 2XTBI PCS and Embedded PMA Signals (E-Tile)
6.1.5. 10/100/1000 Ethernet MAC Without Internal FIFO Buffers with 1000BASE-X/SGMII 2XTBI PCS Signals
6.1.6. 10/100/1000 Ethernet MAC Without Internal FIFO Buffers with IEEE 1588v2 and 1000BASE-X/SGMII 2XTBI PCS Signals
6.1.7. 10/100/1000 Ethernet MAC Without Internal FIFO Buffers with IEEE 1588v2, 1000BASE-X/SGMII 2XTBI PCS, SGMII Bridge, and Deterministic Latency Signals
6.1.8. 10/100/1000 Multiport Ethernet MAC with 1000BASE-X/SGMII PCS Signals
6.1.9. 10/100/1000 Ethernet MAC with 1000BASE-X/SGMII TBI (LVDS I/O only) PCS Signals
6.1.10. 10/100/1000 Ethernet MAC with 1000BASE-X/SGMII PCS and Embedded PMA Signals
6.1.11. 10/100/1000 Multiport Ethernet MAC with 1000BASE-X/SGMII PCS and Embedded PMA Signals
6.1.12. 1000BASE-X/SGMII PCS Signals
6.1.13. 1000BASE-X/SGMII 2XTBI PCS Signals
6.1.14. 1000BASE-X/SGMII PCS and PMA Signals
6.1.1.1. Clock and Reset Signals
6.1.1.2. Clock Enabler Signals
6.1.1.3. MAC Control Interface Signals
6.1.1.4. MAC Status Signals
6.1.1.5. MAC Receive Interface Signals
6.1.1.6. MAC Transmit Interface Signals
6.1.1.7. Pause and Magic Packet Signals
6.1.1.8. MII/GMII/RGMII Signals
6.1.1.9. PHY Management Signals
6.1.1.10. ECC Status Signals
6.1.11.1. IEEE 1588v2 RX Timestamp Signals
6.1.11.2. IEEE 1588v2 TX Timestamp Signals
6.1.11.3. IEEE 1588v2 TX Timestamp Request Signals
6.1.11.4. IEEE 1588v2 TX Insert Control Timestamp Signals
6.1.11.5. IEEE 1588v2 Time-of-Day (TOD) Clock Interface Signals
6.1.11.6. IEEE 1588v2 PCS Phase Measurement Clock Signal
6.1.11.7. IEEE 1588v2 PHY Path Delay Interface Signals
7.1. Optimizing Clock Resources in Multiport MAC with PCS and Embedded PMA
7.2. Sharing PLLs in Devices with LVDS Soft-CDR I/O
7.3. Sharing PLLs in Devices with GIGE PHY
7.4. Sharing Transceiver Quads
7.5. Migrating From Old to New User Interface For Existing Designs
7.6. Clocking Scheme of MAC with 2XTBI PCS and Embedded PMA
10.6.1. alt_tse_mac_get_common_speed()
10.6.2. alt_tse_mac_set_common_speed()
10.6.3. alt_tse_phy_add_profile()
10.6.4. alt_tse_system_add_sys()
10.6.5. triple_speed_ethernet_init()
10.6.6. tse_mac_close()
10.6.7. tse_mac_raw_send()
10.6.8. tse_mac_setGMII mode()
10.6.9. tse_mac_setMIImode()
10.6.10. tse_mac_SwReset()
Visible to Intel only — GUID: bhc1410932088401
Ixiasoft
6.2.6. RGMII Receive
On receive all signals are sampled on both edges of rx_clk . The RGMII control signal rx_control is asserted by the PHY to indicate the start of a new frame and remains asserted until the last upper nibble of the frame is present on rgmii_in[3:0] bus. Between frames, rx_control remains deasserted.
Figure 72. RGMII Receive in 10/100 Mbps
Figure 73. RGMII Receive in 1000 Mbps
A frame received on the RGMII interface with a PHY error indication is subsequently transferred on the Avalon® streaming interface with the error signal rx_err[0] asserted.
Figure 74. RGMII Receive with Error in Gigabit Mode
The current implementation of the RGMII receive interface expects a positive-delay rx_clk relative to the receive data (the clock comes after the data).