Visible to Intel only — GUID: GUID-2D61988B-16E9-4FA7-A3E5-7AE40CF1D062
Legal Information
Getting Help and Support
Introduction
Check-list for OpenCL™ Optimizations
Tips and Tricks for Kernel Development
Application-Level Optimizations
Debugging OpenCL™ Kernels on Linux* OS
Performance Debugging with Intel® SDK for OpenCL™ Applications
Coding for the Intel® Architecture Processors
Why Optimizing Kernels Is Important?
Avoid Spurious Operations in Kernels
Avoid Handling Edge Conditions in Kernels
Use the Preprocessor for Constants
Prefer (32-bit) Signed Integer Data Types
Prefer Row-Wise Data Accesses
Use Built-In Functions
Avoid Extracting Vector Components
Task-Parallel Programming Model Hints
Common Mistakes in OpenCL™ Applications
Introduction for OpenCL™ Coding on Intel® Architecture Processors
Vectorization Basics for Intel® Architecture Processors
Vectorization: SIMD Processing Within a Work Group
Benefitting from Implicit Vectorization
Vectorizer Knobs
Targeting a Different CPU Architecture
Using Vector Data Types
Writing Kernels to Directly Target the Intel® Architecture Processors
Work-Group Size Considerations
Threading: Achieving Work-Group Level Parallelism
Efficient Data Layout
Using the Blocking Technique
Intel® Turbo Boost Technology Support
Global Memory Size
Visible to Intel only — GUID: GUID-2D61988B-16E9-4FA7-A3E5-7AE40CF1D062
Note on Local Memory Use
One way to optimize OpenCL™ kernels is to use local memory for caching of intermediate results. For Intel® processors, all OpenCL memory objects are cached by hardware, so explicit caching by use of local memory only introduces unnecessary (moderate) overhead.