跳转至主要内容
英特尔标志 - 返回主页
我的工具

选择您的语言

  • Bahasa Indonesia
  • Deutsch
  • English
  • Español
  • Français
  • Português
  • Tiếng Việt
  • ไทย
  • 한국어
  • 日本語
  • 简体中文
  • 繁體中文
登录 以访问受限制的内容

使用 Intel.com 搜索

您可以使用几种方式轻松搜索整个 Intel.com 网站。

  • 品牌名称: 酷睿 i9
  • 文件号: 123456
  • Code Name: Emerald Rapids
  • 特殊操作符: “Ice Lake”、Ice AND Lake、Ice OR Lake、Ice*

快速链接

您也可以尝试使用以下快速链接查看最受欢迎搜索的结果。

  • 产品信息
  • 支持
  • 驱动程序和软件

最近搜索

登录 以访问受限制的内容

高级搜索

仅搜索

Sign in to access restricted content.

不建议本网站使用您正在使用的浏览器版本。
请考虑通过单击以下链接之一升级到最新版本的浏览器。

  • Safari
  • Chrome
  • Edge
  • Firefox

Intel® Distribution for Python*

Achieve near-native code performance with this set of essential packages optimized for high-performance numerical and scientific computing.

 

  • Overview
  • Download
  • Documentation & Resources

High-Performance Python

The Intel® Distribution for Python* provides:

  • Scalable performance using all available CPU cores on laptops, desktops, and powerful servers
  • Support for the latest CPU instructions
  • Near-native performance through acceleration of core numerical and machine learning packages with libraries like the Intel® oneAPI Math Kernel Library (oneMKL) and Intel® oneAPI Data Analytics Library
  • Productivity tools for compiling Python code into optimized instructions
  • Essential Python bindings for easing integration of Intel native tools with your Python project
     

For more information, see the system requirements.

 

Develop for Accelerated Compute

Data Parallel Extensions for Python*

Enable standards-based accelerated computing on CPUs and GPUs without using low-level proprietary programming APIs. Optimize performance and portability by extending the familiar CPU programming model to a GPU with a compute follows data model.

Data Parallel Control Library (dpctl)

This library provides utilities for device selection, allocation of data on devices, tensor data structure, the Python* Array API Standard implementation, and support for the creation of user-defined data-parallel extensions.

Data Parallel Extension for NumPy*

This is a drop-in replacement for a subset of NumPy APIs that enable running on Intel CPU and GPUs.

Data Parallel Extension for Numba*

This extension enables you to program GPUs the same way CPUs are programmed with Numba.

 

Who Needs This Product

AI & Machine Learning Developers

  • Build high-performance, end-to-end AI and machine learning pipelines on Intel platforms with the Intel Distribution for Python and the AI Tools. For more information, see AI & Machine Learning.

Analysts, Researchers, and Scientific Computing Developers

  • Gain easy access to all CPU cores and GPU accelerated performance with optimizations for NumPy, SciPy, and Numba that scale from laptops up to powerful servers.

High-Performance Computing (HPC) Developers

  • Tune for highest efficiency at scale using advanced tools for multithreading and multiprocessing with OpenMP*, tbb4py, smp, and mpi4py.
  • Create your own Python libraries and applications that maximize performance using oneMKL, Intel® oneAPI DPC++/C++ Compiler, and Intel® Fortran Compiler runtimes.

Beginners and Students

  • Learn how to productively program in Python using standards-based libraries for the highest performance.
Download the Stand-Alone Version

A stand-alone version of Intel Distribution for Python is available.

Download

What's Included

Package and Environment Managers
Get essential tools for installing, updating, and deleting Python packages and environments.

Data Processing and Modeling Packages
Use these packages in numeric and data science workflows for data collection, ingestion, preprocessing, normalization, transformation, aggregation, and analysis.

Machine Learning Packages
Foundational packages that allow a machine to automatically learn from data without programming it explicitly.

Python Interpreter and Compilers
Use these tools for a versatile interactive experience and to achieve scaled performance.

Advanced Programming Packages
Essential packages that enable fine-grained controls for data management, devices management, concurrency, and parallelism.

Development Packages and Runtimes
Use these runtime packages for enabling performance across Intel-optimized Python packages.

Priority Support
Available through the Intel® oneAPI Base Toolkit.

Benchmarks

successful unbalanced workload performance for Intel distribution for Python

Intel Distribution for Python Oversubscription Performance (successful unbalanced workload performance)

performance of Intel Optimized NumPy and SciPy Linear Algebra

Intel-Optimized NumPy & SciPy Linear Algebra Performance

performance of Intel Optimized NumPy Fast Fourier Transform

Intel-Optimized NumPy Fast Fourier Transform Performance

out of place memory placement performance for Intel Optimized SciPy Fast Fourier Transform

Intel-Optimized SciPy Fast Fourier Transform Performance (out-of-place memory placement performance)

in place memory placement performance for Intel Optimized SciPy Fast Fourier Transform

Intel-Optimized SciPy Fast Fourier Transform Performance (in-place memory placement performance)

Oversubscription performance of Intel Distribution for Python

Intel Distribution for Python Oversubscription Performance

successful unbalanced workload performance for Intel distribution for Python

Intel Distribution for Python Oversubscription Performance (successful unbalanced workload performance)

performance of Intel Optimized NumPy and SciPy Linear Algebra

Intel-Optimized NumPy & SciPy Linear Algebra Performance

Get Help

Your success is our success. Access these support resources when you need assistance.

  • Intel Distribution for Python Forum
  • General oneAPI Support

Stay Up to Date on AI Workload Optimizations

Sign up to receive hand-curated technical articles, tutorials, developer tools, training opportunities, and more to help you accelerate and optimize your end-to-end AI and data science workflows. Take a chance and subscribe. You can change your mind at any time.

除非标为可选,否则所有字段均为必填。

英特尔致力于为您提供优质、个性化的体验,您的数据帮助我们实现这一目标。
本网站采用了 reCAPTCHA 保护机制,并且适用谷歌隐私政策和服务条款。
提交此表单,即表示您确认自己已经年满 18 周岁。英特尔将针对此业务请求处理您的个人数据。要详细了解英特尔的实践,包括如何管理您的偏好和设置,请访问英特尔的隐私声明。
提交此表单,即表示您确认自己已经年满 18 周岁。 英特尔可能会与您联系,以进行与营销相关的沟通。您可以随时选择退出。要详细了解英特尔的实践,包括如何管理您的偏好和设置,请访问英特尔的隐私声明。

You’re In!

Thank you for signing up. Watch for a welcome email to get you started.

  • 公司信息
  • 英特尔资本
  • 企业责任部
  • 投资者关系
  • 联系我们
  • 新闻发布室
  • 网站地图
  • 招贤纳士 (英文)
  • © 英特尔公司
  • 沪 ICP 备 18006294 号-1
  • 使用条款
  • *商标
  • Cookie
  • 隐私条款
  • 请勿分享我的个人信息 California Consumer Privacy Act (CCPA) Opt-Out Icon

英特尔技术可能需要支持的硬件、软件或服务激活。// 没有任何产品或组件能够做到绝对安全。// 您的成本和结果可能会有所不同。// 性能因用途、配置和其他因素而异。请访问 intel.cn/performanceindex 了解更多信息。// 请参阅我们的完整法律声明和免责声明。// 英特尔致力于尊重人权,并避免成为侵犯人权行为的同谋。请参阅英特尔的《全球人权原则》。英特尔产品和软件仅可用于不会导致或有助于任何国际公认的侵犯人权行为的应用。

英特尔页脚标志