
00001101
00001010
00001101
00001010
01001100
01101111
01110010
01100101
01101101
00100000
01101000
01110001
01110011
01110101

Issue

40
2020

10th Anniversary Issue
Optimizing the Performance of oneAPI Applications

Speeding Up Monte Carlo Simulation with oneAPI

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

2The Parallel UniverseCONTENTS
FE

AT
U

RE

Letter from the Editor 	 3
The Parallel Universe Turns 10		
by Henry A. Gabb, Senior Principal Engineer, Intel Corporation

GPU-Quicksort	 5
How to Move from OpenCL™ to Data Parallel C++

Optimizing the Performance of oneAPI Applications	 21	
Getting the Most from this Unified, Standards-Based Programming Model

Speeding Up Monte Carlo Simulation with oneAPI	 37		
Intel® oneAPI Math Kernel Library (Beta) Data Parallel C++ Usage Models

Bringing Accelerated Analytics at Scale to Intel® Architecture	 49	
Unifying Data Science with Traditional Analytics on Modern Hardware

A New Approach to Parallel Computing Using Automatic Differentiation	 55	
Getting Top Performance on Modern Multicore Systems

8 Rules for Parallel Programming for Multicore	 61	
There are Some Consistent Rules that can Help you Solve the Parallelism Challenge and Tap Into the Potential of Multicore

Book Review: The OpenMP Common Core	 65	
Making OpenMP Simple Again

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

3The Parallel Universe

The Parallel Universe Turns 10

This issue marks the 10th anniversary of The Parallel Universe—and my third year as editor.
As the name implies, the magazine was originally conceived as a venue for articles related to
parallel computing. Our core topic is still largely the same because parallelism is even more
prevalent today than it was 10 years ago. However, the mix of topics has changed with the
times. New vector instruction sets provide better instruction-level parallelism. With AVX-512,
Intel CPUs are practically accelerators. We’ve also witnessed the rise of data analytics, so
our editorial policy was expanded to include parallel frameworks (e.g., Apache Spark*) and
achieving high performance with productivity languages (e.g., Python*, Julia*). The universe of
parallel computing has also expanded to include heterogeneous parallelism.

As we discussed in our last issue, oneAPI is the next big thing in heterogeneous parallel
computing. That's why the first three articles in this issue cover topics related to oneAPI. Our
feature article, GPU-Quicksort walks you through a step-by-step translation of OpenCL™
to Data Parallel C++. This is followed by Optimizing Performance of oneAPI Applications
and Speeding Up Monte Carlo Simulation with oneAPI. The former describes Intel’s
programming tools and provides an optimization case study for oneAPI applications. The
latter shows how to offload Intel® Math Kernel Library functions to accelerators using Intel®
oneMKL.

Next, Venkat Krishnamurthy and Kathryn Vandiver from OmniSci discuss the unification of
data science and traditional analytics in Bringing Accelerated Analytics at Scale to Intel®
Architecture. This is followed by A New Approach to Parallel Computing Using Automatic
Differentiation, in which Dmitri Goloubentsev (Matlogica) and Evgeny Lakshtanov (University
of Aviero) describe a tool to convert object-oriented, single-threaded scalar code into
vectorized, multithreaded lambda functions.

3The Parallel Universe

LETTER FROM THE EDITOR
Henry A. Gabb, Senior Principal Engineer at Intel Corporation, is a longtime high-performance and
parallel computing practitioner who has published numerous articles on parallel programming. He
was editor/coauthor of “Developing Multithreaded Applications: A Platform Consistent Approach”
and program manager of the Intel/Microsoft Universal Parallel Computing Research Centers.

Reflections on Where We're Going...and Where We've Been

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

4The Parallel Universe

In the first issue of The Parallel Universe, our founding editor, James Reinders, published 	
8 Rules for Parallel Programming for Multicore that are still relevant and correct today so
we’re republishing them in honor of our 10th anniversary.

Finally, we close this issue with something we’ve never done before—a book review. Ruud
van der Pas from Oracle Corporation was kind enough to review The OpenMP Common
Core: Making OpenMP Simple Again by Timothy G. Mattson, Yun (Helen) He, and Alice E.
Koniges. The original OpenMP specification (published in 1997) was a marvel of technical
writing. It was concise (only 63 pages) and full of code examples to help you get started. The
OpenMP specification has since grown to 666 pages because important new capabilities have
been added to give programmers fine control of vectorization and thread placement, plus
accelerator offload. However, the “common core” of OpenMP referred to in the book title is
largely the same as it was 23 years ago.

As always, don’t forget to check out Tech.Decoded for more information on Intel's solutions
for code modernization, visual computing, data center and cloud computing, data science,
systems and IoT development, and heterogeneous parallel programming with oneAPI.

Henry A. Gabb												
April 2020

oneAPI DevCloud is Open for Coding 24/7
Developing code at home requires easy access to compute cycles and the latest software development tools
that support unified programming across hardware architectures. Intel is here to help improve developers’ work-
from-home experience with the oneAPI DevCloud, which is open whenever you’re ready to code.

Six Ways oneAPI DevCloud Now Makes #WFH Better
1.	Extended access. All DevCloud users now automatically get free access through July 1, 2020.

2.	Increased capacity and expanded hardware availability. Additional processor nodes and accelerators will
provide access to the latest Intel CPUs, GPUs, and FPGAs.

3.	Updated software development tools. The newest releases of Intel® oneAPI beta tools and libraries are
pre-configured, including improvements to unified shared memory and more GPU library functions.

4.	New simplified access. Improvements include immediate sign-up access; a new, modern IDE-like experience
via JupyterLab*; and a simpler Secure Shell (SSH) client experience.

5.	Increased storage allocation. Each user now receives 220 GB of file storage and 192 GB of RAM.

6.	Expanded Dev-to-Dev #WFH forum support. Technical experts are available to provide tips and best
practices for working from home.

SIGN UP NOW for free access. Already have an account? SIGN IN.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://techdecoded.intel.io/
http://app.plan.intel.com/e/er?cid=em&source=elo&campid=&content=iags_WW_iagsoapi2_EMN_EN_2020_DevCloud%20WFH%20email%20CPDP_C-MKA-16371_T-MKA-17626&elq_cid=1162160&em_id=55787&elqrid=4178473f2b13440e9908f2d772be2936&elqcampid=&erpm_id=1945818&s=334284386&lid=403461&elqTrackId=d9838cb35b6840a280b8cff8df80a0a7&elq=4178473f2b13440e9908f2d772be2936&elqaid=55787&elqat=1
http://app.plan.intel.com/e/er?cid=em&source=elo&campid=&content=iags_WW_iagsoapi2_EMN_EN_2020_DevCloud%20WFH%20email%20CPDP_C-MKA-16371_T-MKA-17626&elq_cid=1162160&em_id=55787&elqrid=4178473f2b13440e9908f2d772be2936&elqcampid=&erpm_id=1945818&s=334284386&lid=403461&elqTrackId=d9838cb35b6840a280b8cff8df80a0a7&elq=4178473f2b13440e9908f2d772be2936&elqaid=55787&elqat=1
http://app.plan.intel.com/e/er?cid=em&source=elo&campid=&content=iags_WW_iagsoapi2_EMN_EN_2020_DevCloud%20WFH%20email%20CPDP_C-MKA-16371_T-MKA-17626&elq_cid=1162160&em_id=55787&elqrid=4178473f2b13440e9908f2d772be2936&elqcampid=&erpm_id=1945818&s=334284386&lid=373417&elqTrackId=aee467e7e42f408ab395b2f837ea815a&elq=4178473f2b13440e9908f2d772be2936&elqaid=55787&elqat=1

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

5The Parallel Universe

Robert Ioffe, Senior Exascale Performance Software Engineer, Intel Corporation

Data Parallel C++ (DPC++) is a heterogeneous, portable programming language based on the Khronos

SYCL* standard. This single-source programming language can target an array of platforms: CPUs,

integrated and discrete GPUs, FPGAs, and other accelerators. To give you an idea of what DPC++

can do, we’ll port a non-trivial OpenCL™ application, GPU-Quicksort*, to DPC++ and document the

experience. Our goal will be to exceed the capabilities of the initial application. OpenCL™ C makes it

very hard to write generic algorithms, and it becomes clear that it’s a serious shortcoming when you try

to implement algorithms—like sorting—that need to work for different data types. The original GPU-

Quicksort for OpenCL™ was written to sort unsigned integers. We’ll demonstrate how to use templates

How to Move from OpenCL™ to Data Parallel C++

GPU-Quicksort*

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

6The Parallel Universe

with DPC++ and implement GPU-Quicksort for multiple data types. Finally, we’ll port GPU-Quicksort

to Windows* and Ubuntu* 18.04 to show DPC++ portability.

What’s GPU-Quicksort?
GPU-Quicksort is a high-performance sorting algorithm designed specifically for highly parallel,

multicore graphics processors. It was invented in 2009 by Daniel Cederman and Phillippas Tsigas,

a student and professor from the Chalmers University of Technology in Sweden. Originally

implemented in CUDA*, it was reimplemented in 2014 in OpenCL™ 1.2 and OpenCL™ 2.0 by me

to demonstrate high performance on Intel® Integrated Processor Graphics and showcase nested

parallelism and work-group scan functions in OpenCL™ 2.0 and fully implemented in Intel OpenCL™

drivers. We’ll port an OpenCL™ 1.2 implementation of the GPU-Quicksort to DPC++ and make the

implementation generic so that it can sort not just unsigned integers, but also floats and doubles.

What’s OpenCL™?
We’ll start with the OpenCL™ 1.2 implementation. Intel fully supports OpenCL™, a Khronos standard

for programming heterogeneous parallel systems, on a variety of operating systems and platforms.

OpenCL™ consists of:

	• The runtime

	• The host API

	• The device C-based programming language OpenCL™ C

Here lie both its power and its limitations. The power is the ability to write high-performance,

portable, heterogeneous parallel applications. Its main limitation is the necessity to write and debug

two separate codes—the host side and the device side—as well as the lack of templates and other

C++ features modern programmers are accustomed to, which makes writing generic libraries in

OpenCL™ hard.

What’s Data Parallel C++?
DPC++ is an Intel implementation of Khronos SYCL* with extensions. The SYCL standard designed to

address the OpenCL™ limitations outlined above. DPC++ provides:

	• A single-source programming model, which consists of a single code base for both host and device
programming

	• The full use of C++ templates and template metaprogramming on the device with minimal impact on
performance without compromising portability

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

7The Parallel Universe

DPC++ lets a programmer target CPUs, GPUs, and FPGAs while permitting accelerator-specific tuning—a

definite improvement over OpenCL™. It’s also supported by Intel® software tools like Intel® VTune™ Profiler

and Intel® Advisor, as well as by GDB*. We’ll make full use of DPC++, especially its template features.

The Starting Point: Windows* Apps from 2014
We’ll start with GPU-Quicksort for OpenCL™ 1.2 (as described in the article GPU-Quicksort in OpenCL™ 2.0:
Nested Parallelism and Work-Group Scan Functions). The original application was written for Windows, so

we port it to Ubuntu 18.04 by adding the cross-platform code to measure time and use aligned_alloc/free

for aligned memory allocation/deallocation, as opposed to _alligned_malloc/_aligned_free on

Windows.

Let’s get a brief overview of GPU-Quicksort architecture. It consists of two kernels:

1.	gqsort_kernel

2.	lqsort_kernel

Written in OpenCL™ 1.2, these are glued together by a dispatcher code, which iteratively calls gqsort_kernel

until the input is split into small enough chunks, which can be fully sorted by lqsort_kernel. The

application allows the user to select:

	• The number of times to run sort for measurement purposes

	• The vendor and device on which to run the kernels

	• The size of the input

	• Whether to show device details

The application follows a typical OpenCL™ architecture of supporting utilities for initializing OpenCL™ platforms

and devices and building code for them. A separate file, with the OpenCL™ kernels and their supporting

functions and the main application that accepts user arguments, initializes the platform and device, builds the

kernels, properly allocates memory, and creates buffers from it, and then binds them to the kernel arguments

and launches the dispatcher function.

Data Parallel C++/OpenCL™ Interoperability: Platform Initialization
First, install the Intel® oneAPI Base Toolkit, which includes the Intel® oneAPI DPC++ Compiler. We start

our port to DPC++ by including the CL/sycl.hpp header and, to spare us the verbosity of DPC++, using the

namespace cl::sycl clause:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/vtune
https://software.intel.com/en-us/advisor
https://software.intel.com/en-us/articles/gpu-quicksort-in-opencl-20-using-nested-parallelism-and-work-group-scan-functions
https://software.intel.com/en-us/articles/gpu-quicksort-in-opencl-20-using-nested-parallelism-and-work-group-scan-functions
https://software.intel.com/en-us/oneapi/base-kit
https://software.intel.com/en-us/oneapi/dpc-compiler

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

8The Parallel Universe

Now, instead of initializing a platform, a device, a context, and a queue the OpenCL™ way, we do it the

concise DPC++ way:

We also need to retrieve the underlying OpenCL™ context, device, and queue, since the rest of the

application is OpenCL™ based:

That’s our first iteration: configure and compile it with the Intel DPC++ Compiler and run it.

Data Parallel C++: How to Select an Intel GPU
The shortcoming of the first iteration is that it always selects the default device, which may or may not be

an Intel GPU. To specify an Intel GPU, we need to write a custom device selector:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

9The Parallel Universe

We use intel_gpu_selector to select an Intel GPU when the user asks for it:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

10The Parallel Universe

Data Parallel C++: How to Set Kernel Arguments and Launch Kernels
The third iteration of our code uses DPC++ to set kernel arguments and launch kernels. The program

is still built, and the kernels are obtained, in the OpenCL™ way. We use cl::sycl::kernel objects to

wrap original OpenCL™ kernels. For example:

We replace a number of clSetKernelArg methods with set_arg DPC++ methods and

clEnqueueNDRange calls with parallel_for calls. This example below shows gqsort_kernel, but

a lqsort_kernel upgrade is very similar:

Here’s a less verbose style to set all the arguments of the kernel with one set_args call:

We can also use a less verbose version of the parallel_for:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

11The Parallel Universe

Data Parallel C++: How to Create Buffers and Set the Access Mode
We convert OpenCL™ buffers to DPC++ buffers. (The first two are wrapping the memory that was align-

allocated and passed into the function by reference. The other three are created from an STL vector.)

We use the template keyword in front of the get_access member function for buffers that we pass by

reference. Note the different access modes for various buffers, depending on whether we need read- or

write-access, or both. We don’t directly pass buffers as kernel arguments; we pass the accessors to them:

Data Parallel C++: How to Query Platform and Device Properties
In OpenCL™, we used the methods clGetPlatformInfo and clGetDeviceInfo to query various

platform and device properties. Now we can use get_info<> methods to query the same information.

For example:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

12The Parallel Universe

or query properties with a more complex structure:

Porting OpenCL™ Kernels to Data Parallel C++, Part 1: gqsort_kernel
So far, we’ve initialized the platform and the device, created the buffers and their accessors and bound

them to the kernels, and launched those kernels on the device in a DPC++ way. But we still need to create

the kernels in an OpenCL™ way. We use OpenCL™ C and clBuildProgram/clCreateKernel APIs to

build the program and create kernels. The OpenCL™ C kernels are stored in a separate file that’s loaded

into the program at runtime before being built. We’ll change that, starting with the gqsort_kernel, the

simpler of the two kernels.

The DPC++ way of creating kernels is via lambdas or functors. The use of lambdas for kernel creation is

typically reserved for smaller kernels. When you have a more complex kernel that uses supporting functions,

it’s a good idea to create a functor class. We’re going to create a gqsort_kernel_class functor and make

it templated right from the start so that we can sort more than one datatype in the future.

A typical functor class will have a void operator() that will take as a parameter an iteration id (in our

case, a one-dimensional nd_item<1> id). The body of the kernel will reside in the void operator().

The functor will also have a constructor that will take global and local accessors, the equivalent of

global and local memory pointers for an OpenCL™ kernel. The typical DPC++ functor will have a

preamble, with using clauses defining various global and local accessor types. In the case of gqsort_kernel, it will

look like this:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

13The Parallel Universe

The private section of the functor will contain all the global and local accessors used within the body

of the void operator(). In our case, it will look like this, with the first five accessors to global

buffers and the rest to the local buffers:

gqsort_kernel is a complex kernel that uses supporting structs and two supporting functions:

plus_prescan and median, which, in turn, use specialized OpenCL™ functions and extensively use

local memory arrays and variables, local and global barriers, and atomics. All these elements must be

translated into DPC++.

Let’s start with the functions. We omit structs, since they’re trivially templatized. The plus_prescan

function that’s used to calculate scan sums is relatively simple, so the only change we’ll make to bring it to

DPC++ is to make it a template function in preparation of making our sort generic:

The median function is next. We not only need to make it a template function, we also need to

replace the OpenCL™ C select function with the DPC++ cl::sycl::select function and rename

it median_select to differentiate it from a similar host function:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

14The Parallel Universe

In OpenCL™ C, it’s possible to both create local memory variables and arrays inside the body of the

kernel and pass them as kernel parameters. But in DPC++, when using functors, we pass local buffer

accessors when constructing the functor. In our case, all local memory variables and arrays will hold

unsigned integers, so we’ll create a special local_read_write_accessor type:

We declare all the local memory variables:

We then pass them as parameters, along with global buffer accessors, to our functor constructor.

Then the resulting object is passed to the parallel_for:

Here, DPC++ lacks simplicity compared to OpenCL™ C. Next, get_group_id and get_local_id

functions become:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

15The Parallel Universe

Local barriers go from:

to:

Global and local barriers go from:

to:

For atomic operations, DPC++ is not as elegant as OpenCL™ C. So, what was concise:

becomes unwieldy:

Note the creation of cl::sycl::atomic<> variables prior to the use of DPC++ atomic

operations, which cannot operate on the global or local memory pointers directly.

So far, we’ve translated and templatized supporting structs and functions, converting specialized

OpenCL™ C functions to DPC++. We’ve also created a template functor class with local accessors

and translated barriers and atomics.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

16The Parallel Universe

 Porting OpenCL™ Kernels to Data Parallel C++, Part 2: 			
 lqsort_kernel

Translation of lqsort_kernel follows the familiar patterns outlined by the translation of

gqsort_kernel: create a lqsort_kernel_class functor and then translate local memory

arrays and variables and barriers (no atomics here). lqsort_kernel also uses supporting

functions and structs. In addition to plus_prescan and median_select used by gqsort_kernel,

we have bitonic_sort and sort_threshold that are considerably more complex and specific

to lqsort_kernel. After translation, they become the member functions of the lqsort_kernel_class.

Their signatures change due to barrier use which, in the case of DPC++, requires the iteration

objects. They work on local and global memory pointers, which require special handling so the

OpenCL™ C signature:

becomes:

and:

becomes:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

17The Parallel Universe

These functions are translated similarly to gqsort_kernel, with the UINT_MAX macro being

replaced with std::numeric_limits<T>::max() to handle various data types in the future.

When translating the lqsort_kernel, pointers to local memory (e.g., local uint* sn;) are

replaced with local_ptr<> objects (e.g., local_ptr<T> sn;). To retrieve the local pointer

from the local accessor, we call the get_pointer member function of the accessor:

local_ptr<> and global_ptr<> objects work with pointer arithmetic, so what previously was

d + d_offset, where d was a global pointer, becomes:

We translate local memory variables as accessors of size 1, meaning array accesses at index 0 (e.g.,

gtsum[0]). When we complete the lqsort_kernel translation, we fully transition to DPC++,

but still sort unsigned integers. We did all the prework of templatizing supporting structs and

functions and the functor classes of the two main kernels—and will enjoy the benefits.

 The Power of Data Parallel C++: Templates…And Their Caveats
The real power of DPC++ is the ability to use C++ templates, which enable writing generic

code. We want our GPU-Quicksort to be generic and to be able to sort not only unsigned

integers, but also other basic data types (e.g., floats and doubles). In addition to the 	

UINT_MAX to std::numeric_limits<T>::max()change mentioned above, we need

additional modification of the median_select function. cl::sycl::select takes a different

type of the third argument, depending on the size of the type of the first two arguments, so we

introduce the select_type_selector type traits class:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

18The Parallel Universe

It allows us to convert a Boolean comparison to an appropriate type required by

cl::sycl::select; median_select becomes:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

19The Parallel Universe

To handle additional types, we need more specializations of select_type_selector. Now

GPUQSort can sort floats and doubles on the GPU.

 Back to Windows…And RHEL*
To demonstrate DPC++ portability, we port the code to Windows and RHEL*. The RHEL port is

minimal: we add the Intel imf math library at link time. Windows porting is slightly more complex.

Add the following definitions when compiling:

Accounting for the fact that cl::sycl::select for doubles requires unsigned long long type

as the third parameter (as opposed to unsigned long on Linux), select_type_selector for

doubles becomes:

On Windows, we undefine max and min to prevent the macro definitions from colliding with

std::min and std::max. That’s all there is to it. We can sort unsigned integers, floats, and

doubles using Intel GPUs on Windows and two Linux flavors.

 Get Started Now
We gradually translated GPU-Quicksort from its original OpenCL™ 1.2 into DPC++. At every step

along the way, we had a working application. So, when you’re considering bringing DPC++ to

your workflow, start small and either add on or fully transition to DPC++ as time allows. Easily

mix OpenCL™ and DPC++ in your code base and enjoy the benefits of both. Use legacy OpenCL™

kernels in their original form and enjoy the full power of C++ templates, classes, and lambdas

when you're developing new code in DPC++. Easily port code between Windows and various Linux

flavors and choose which platform to develop on. You also have the full power of Intel tools to

help you debug, profile, and analyze your DPC++ program.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

20The Parallel Universe

 Resources
	• Khronos OpenCL™, the open standard for parallel programming of heterogeneous systems

	• Khronos SYCL, C++ single-source heterogeneous programming for OpenCL™

	• GPU-Quicksort: A practical Quicksort Algorithm for Graphics Processors by Daniel Cederman

and Philippas Tsigas

	• GPU-Quicksort in OpenCL™ 2.0: Nested Parallelism and Work-Group Scan Functions by

Robert Ioffe

	• Intel® oneAPI Toolkits

	• Accompanying code for this article

Dive Into Data Parallel C++: An Open, Standards-Based,
Cross-Architecture Programming Solution

Software developers know the challenges of programming across different processor
architectures, particularly with the increasing number of accelerators on the market. The oneAPI
industry initiative was created to meet these challenges. Based on open standards, oneAPI
encourages community contributions and enhancements. A key goal of oneAPI is to remove
development barriers that stand in the way of meeting customer workload requirements.

blog Highlights

Read on >

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/blogs/2020/03/12/dive-into-data-parallel-c
https://www.khronos.org/opencl/
https://www.khronos.org/sycl/
https://dl.acm.org/citation.cfm?id=1564500
https://software.intel.com/en-us/articles/gpu-quicksort-in-opencl-20-using-nested-parallelism-and-work-group-scan-functions
https://software.intel.com/en-us/oneapi
https://software.intel.com/content/www/us/en/develop/download/code-for-the-parallel-universe-article-gpu-quicksort-from-opencl-to-data-parallel-c.html
https://software.intel.com/en-us/blogs/2020/03/12/dive-into-data-parallel-c

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

21The Parallel Universe

Kevin O’Leary, Software Technical Consulting Engineer, Intel Corporation

Modern workloads are incredibly diverse—and so are processor architectures. No single architecture

is best for every workload. Maximizing performance takes a mix of scalar, vector, matrix, and spatial

(SVMS) architectures deployed in CPU, GPU, FPGA, and future accelerators. Intel® oneAPI products

will deliver what you need to deploy your applications across SVMS. This set of complementary

toolkits—a base kit and specialty add-ons—simplifies programming and helps you improve

efficiency and innovation.

Getting the Most from this Unified, Standards-Based Programming Model

Optimizing the Performance of
oneAPI Applications

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

22The Parallel Universe

The Intel® oneAPI Base Toolkit (beta) includes advanced analysis and debug tools for profiling,

design advice, and debugging:
	• Intel® VTune™ Profiler (beta) finds performance bottlenecks in CPU, GPU, and FPGA systems.

	• Intel® Advisor (beta) provides vectorization, threading, and accelerator offload advice.

	• Intel-enhanced GDB* (beta) helps efficiently debug code.

Performance Analysis Tools
This article will focus on Intel Advisor (beta) and Intel VTune Profiler (beta) and the new features they

provide as part of the Intel oneAPI Base Toolkit (beta).

Intel® Advisor (Beta)
Intel Advisor (beta) is an extended version of Intel Advisor, a tool for code modernization,

programming guidance, and performance estimation that supports the DPC++ language on CPUs

and GPUs. It provides codesign, performance modeling, analysis, and characterization features for C,

C++, Fortran*, and mixed Python* applications.

Intel Advisor (beta) includes:

	• Offload Advisor to help you identify high-impact opportunities to offload to the GPU as well as areas
that aren’t useful to offload. You can also project performance speedup on accelerators, estimate offload
overhead, and pinpoint accelerator performance bottlenecks.

	• Vectorization Advisor to help you identify high-impact, under-optimized loops and see what’s blocking
vectorization and where it’s safe to force vectorization.

	• Threading Advisor to help you analyze, design, tune, and check threading design options without
disrupting your normal development.

	• Roofline Analysis to help you visualize performance on both your CPU and GPU and see how close you
are to the maximum possible performance.

	• Intel® FPGA Add-On for oneAPI Base Toolkit (beta) (optional) to help you program these
reconfigurable hardware accelerators to speed specialized, data-centric workloads. (Requires installation
of the Intel oneAPI Base Toolkit.)

Use the Offload Advisor command-line feature to design code for efficient offloading to

accelerators—even before you have hardware. Estimate code performance and compare it with data

transfer costs. No recompilation is required.

The Intel Advisor (beta) GPU performance evaluation (Figure 1) produces upper-bound speedup

estimates using a bounds and bottlenecks performance model. It takes measured x86 CPU metrics

and application characterization as input and applies an analytical model to estimate execution time

and characteristics on a target GPU.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/oneapi/base-kit
https://software.intel.com/en-us/oneapi/vtune-profiler
https://software.intel.com/en-us/oneapi/advisor
https://software.intel.com/en-us/articles/the-gnu-project-debugger-gdb
https://software.intel.com/en-us/oneapi/dpc-compiler
https://software.intel.com/en-us/oneapi/fpga

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

23The Parallel Universe

The Roofline Analysis feature helps you optimize your CPU or GPU code for compute and memory. Locate

bottlenecks and determine performance headroom for each loop or kernel to prioritize which optimizations

will deliver the highest performance payoff. (Note that GPU Roofline Analysis is in technical preview.)

Intel® VTune™ Profiler (Beta)
Intel VTune Profiler (beta) is a performance analysis tool for serial and multithreaded applications. It helps

you analyze algorithm choices and identify where and how your application can benefit from available

hardware resources. Use it to locate or determine:

	• The most time-consuming (hot) functions in your application and/or on the whole system

	• Sections of code that don’t effectively utilize available processor resources

	• The best sections of code to optimize for both sequential and threaded performance

	• Synchronization objects that affect the application performance

	• Whether, where, and why your application spends time on input/output operations

	• Whether your application is CPU- or GPU-bound and how effectively it offloads code to the GPU

	• The performance impact of different synchronization methods, different numbers of threads, or different
algorithms

	• Thread activity and transitions

	• Hardware-related issues in your code such as data sharing, cache misses, branch misprediction, and
others

1 Intel Advisor (beta) GPU performance evaluation

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

24The Parallel Universe

The tool also has new features to support GPU analysis:

	• VTune GPU Offload Analysis (technical preview)

	• GPU Compute/Media Hotspots Analysis (technical preview)

GPU Offload Analysis (Preview)
Use this tool to analyze code execution on the CPU and GPU cores of your platform, correlate CPU

and GPU activity, and identify whether your application is GPU- or CPU-bound. The tool infrastructure

automatically aligns clocks across all cores in the system so you can analyze some CPU-based workloads

together with GPU-based workloads within a unified time domain. This analysis lets you:

	• Identify how effectively your application uses DPC++ or OpenCL™ kernels.

	• Analyze execution of Intel® Media SDK tasks over time (for Linux targets only).

	• Explore GPU usage and analyze a software queue for GPU engines at each moment of time.

GPU Compute/Media Hotspots Analysis (Preview)
Use this tool to analyze the most time-consuming GPU kernels, characterize GPU usage based on GPU

hardware metrics, identify performance issues caused by memory latency or inefficient kernel algorithms,

and analyze GPU instruction frequency for certain instruction types. The GPU Compute/Media Hotspots

analysis allows you to:

	• Explore GPU kernels with high GPU utilization, estimate the efficiency of this utilization, and identify
possible reasons for stalls or low occupancy.

	• Explore the performance of your application per selected GPU metrics over time.

	• Analyze the hottest DPC++ or OpenCL™ kernels for inefficient kernel code algorithms or incorrect
work item configuration.

Case Study: Using Software Tools to Optimize 				
oneAPI Applications
Now that we know some of the tools and features available in the Intel oneAPI Base Toolkit, let’s try

working through an example. In this case study, we look at the usage of Intel VTune Profiler (beta) and

Intel Advisor (beta) to optimize an application. We’ll look at several Intel Advisor (beta) features including

Roofline Analysis and Offload Advisor to determine the bottlenecks in an application and the regions to

offload to an accelerator.

Matrix multiplication is a common operation in many applications. Here’s a sample matrix

multiplication kernel:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

25The Parallel Universe

The algorithm is a triply nested loop with a multiplication and addition in each iteration. Code like this is

computationally intensive with many memory accesses. Intel Advisor is ideal for helping you analyze it.

Using Intel Advisor (Beta) to Help Port to GPU
Intel Advisor (beta) has a feature that lets you see the portions of the code that can profitably be offloaded

to a GPU. It also can predict the code performance when run on the GPU and lets you experiment based

on several criteria. Analyzing DPC++ code with Intel Advisor (beta) requires a two-stage analysis:

The screenshot in Figure 2 shows the CPU run time and the predicted time when run on the accelerator

(in this case, a GPU). It shows how many regions were offloaded and the net speedup. You can also see

what the offloads are bounded by. In our case, we are 99% bounded by the last-level cache bandwidth

(LLC BW).

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/oneapi

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

26The Parallel Universe

In the Summary section of the report, you can see:

	• The original CPU execution time, the predicted execution time on the GPU accelerator, the number of
offloaded regions, and the speedup in the “Program metrics” pane.

	• What the offloads are bounded by. In our case, the offloads are 99% bounded by the last-level cache
(LLC) bandwidth.

	• Exact source lines of the top offloaded code regions that will benefit from offloading to the GPU. In
our case, there’s only one code region recommended for offload.

	• Exact source lines of the “Top non-offloaded” code regions that aren’t recommended for offload for
various reasons. In our case, the time spent in the loops is too small to be modeled accurately and one
of the loops is outside the code region marked for offloading.

Use this information to rewrite the matrix multiplication kernel in DPC++.

 Rewrite the Matrix Multiplication Kernel in DPC++
Intel Advisor (beta) provides the exact source line of the offloaded region, as shown in Figure 3.

The tool also recommends loops that don’t need to be offloaded because their compute time is

too small to be modeled accurately or they’re outside of a marked region (Figure 4).

2 CPU run time and predicted GPU run time

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

27The Parallel Universe

3 Top offloaded region

4 Top non-offloaded region

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

28The Parallel Universe

Follow these steps to rewrite the matrix multiplication kernel in DPC++ (as shown in the code sample below):

1.	Select an offload device.

2.	Declare a device queue.

3.	Declare some buffers to hold the matrix.

4.	Submit work to the device queue.

5.	Execute the matrix multiplication in parallel.

Optimize GPU Usage with Intel VTune Profiler (beta)
Offload Advisor helped us port our CPU kernel to a GPU, yet our initial implementation is far from

optimal. We’ll use the GPU offload features of Intel VTune Profiler (beta) to see how effectively we’re

using our GPU (Figure 5). GPU offload is showing that our application has an elapsed time of 2.017

seconds and our GPU utilization is 100%. We can also see that matrix multiplication is our hotspot.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

29The Parallel Universe

By switching to the Graphics and Platform tabs, we can see more details. Intel VTune Profiler (beta)

shows a synchronized timeline between the CPU and GPU. GPU offload does indicate that our GPU

execution units are stalling, as indicated by the dark red bar in the timeline (Figure 6).

Next, we'll run the Intel VTune Profiler (beta) GPU Hotspots report to try to identify the source of our

low GPU utilization and stalls. Click on the Graphics tab in GPU Hotspots and you can see a high-level

diagram of your architecture (Figure 7). Notice that we’re not using the shared local memory (SLM)

cache. Also notice that we’re moving around 159.02 GB/s in total.

We’ll try two optimization techniques:

1.	Cache blocking the matrix

2.	Using local memory

5 GPU offload report

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

30The Parallel Universe

6 GPU execution units are stalling

7 Architecture diagram prior to memory optimization

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

31The Parallel Universe

To implement these techniques, we need to break our matrix into tiles and work on them separately in

the SLM cache:

The new architecture diagram shows that this is much more efficient (Figure 8). We’re making use of the

SLM: 136.35 GB/s for read and 45.45 GB/s for write.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

32The Parallel Universe

8 Architecture diagram after memory optimization

Click on the Platform tab (Figure 9) to see some additional metrics. You can see that our matrix is stored

in 1024x1024 global memory, but we make use of local memory in a 16x16 tile. The elapsed time for

our new matrix is 1.22s, a 1.64x improvement.

9 Platform tab

Intel Advisor GPU Roofline
To see if the GPU version of our matrix multiplication kernel is getting the maximum performance from

our hardware, we can use the new GPU Roofline feature. Intel Advisor (beta) can generate a Roofline

Model for kernels running on Intel GPUs. The Roofline Model offers a very efficient way to characterize

your kernels and visualize how far you are from ideal performance.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

33The Parallel Universe

The Roofline Model on GPU is a tech preview feature that’s not available by default. Here’s a five-step

process to enable it:

	• First, ensure that you have a DPC++ code that correctly runs on the GPU. You can easily check which
hardware you are running on by doing something like this:

	• Since this is a technical preview, you need to enable GPU profiling by setting the following environment
variable: export ADVIXE_EXPERIMENTAL=gpu-profiling.

	• Next, run the survey with the --enable-gpu-profiling option: advixe-cl -collect survey
--enable-gpu-profiling --project-dir <my_project_directory> --search-dir
src:r=<my_source_directory> -- ./myapp param1 param2

	• Run the tripcount analysis with the --enable-gpu-profiling option: advixe-cl -collect
tripcounts --stacks --flop --enable-gpu-profiling --project-dir <my_project_directory>
--search-dir src:r=<my_source_directory> -- ./myapp param1 param2

	• Generate the Roofline Model: advixe-cl --report=roofline --gpu --project-dir
<my_project_directory> --report-output=roofline.html

Once the last step is executed, the file roofline.html will be generated and can be opened in any Web

browser (Figure 10).

10 Roofline report

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

34The Parallel Universe

It’s also possible to display different dots based on which memory subsystem is used for the arithmetic

intensity computation (Figure 11).

11 Memory level

12 Roofline chart

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

35The Parallel Universe

As you can can see from the roofline chart in Figure 12, our L3 dot is very close to the L3 maximium

bandwidth. To get more FLOPS, we need to optimize our cache utilization further. A cache-blocking

optimization strategy can make better use of memory and should increase our performance. The GTI

(traffic between our GPU, GPU uncore [LLC], and main memory) is far from the GTI roofline, so transfer

costs between CPU and GPU do not seem to be an issue.

Freedom to Focus
Intel oneAPI products will provide a standard, simplified programming model that can run seamlessly

on the scalar, vector, matrix, and spatial architectures deployed in CPUs and accelerators. It will give

users the freedom to focus on their code instead of the underlying mechanism that generates the best

possible machine instructions.

Learn More
	• oneAPI Initiative
	• Intel® oneAPI Toolkits (beta)
	• Intel® Advisor (beta)
	• Intel® VTune™ Profiler (beta)

oneAPI DPC++: Kernel and API Interoperability with OpenCL™ and
SYCL* Technology

This article discusses OpenCL™ C kernel ingestion and execution within a SYCL* program;
differences in the analogous single-source program; tips including interoperability features,
error handling, build recommendations, precision issues, and instrumentation; and references
to development tools and documentation.

blog Highlights

Read on >

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.oneapi.com/
https://software.intel.com/en-us/oneapi
https://software.intel.com/en-us/oneapi/advisor
https://software.intel.com/en-us/oneapi/vtune-profiler
https://software.intel.com/en-us/articles/interoperability-dpcpp-sycl-opencl
https://software.intel.com/en-us/articles/interoperability-dpcpp-sycl-opencl

Teach your Code
To Be Smarter

FreE Download > Software

For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.
Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
© Intel Corporation

Download free Intel®
Performance Libraries

and start creating better,
more reliable, and faster

applications now.

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

37The Parallel Universe

Alina Elizarova and Pavel Dyakov, Math Algorithm Engineers, and Gennady Fedorov, 		
Software Technical Consulting Engineer, Intel Corporation

Intel® oneAPI Math Kernel Library (Beta) Data Parallel C++ Usage Models

Speeding Up Monte Carlo Simulation 	
with oneAPI

Intel® oneAPI Math Kernel Library (beta) (oneMKL beta) gives developers and data scientists

enhanced math routines for creating science, engineering, or financial applications. You can use it to

optimize code for current and future generations of Intel® CPUs and GPUs. In this article, we’ll apply some

oneMKL beta Data Parallel C++ (DPC++) usage models to a Monte Carlo (MC) simulation example using

the oneMKL beta random number generators (RNG).

We’ll look at five usage models:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/oneapi/onemkl
https://software.intel.com/en-us/oneapi/dpc-compiler

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

38The Parallel Universe

1.	Reference C++

2.	oneMKL beta DPC++

3.	Extended oneMKL beta DPC++

4.	Heterogeneous parallel implementations

5.	Implementations based on different memory allocation techniques

The bottom line? Minimizing data transfer between the host and device significantly improves

performance.

 Computing π by Numerical Integration
MC simulations are a broad class of computational algorithms that use repeated, random sampling

to obtain numerical results1. Figure 1 shows how to compute π using the MC method.

1 Computing π using the Monte Carlo method

We’ll consider a quadrant inscribed in a unit square. The area of sector S is equal to Area(S)=1/4 πr2=π/4,

and the area of the square R is equal to Area(R)=1. If we randomly choose the point c=(x,y) from the unit

square R, the probability that c is within sector S is:

We can consider n points, where n is sufficiently large, and count the number of points falling into S – k.

Then, we can approximate the probability by the ratio k/n, or:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

39The Parallel Universe

We can approximate π as:

According to the laws of large numbers, the larger the n, the more accurate our π approximation. More

accurately, from the Bernoulli theorem, for any ε>0

If x and y coordinates of the tested point c are 0≤x≤1 and 0≤y≤1 (abscissa and ordinate, respectively),

then c falls into sector S when:

x2+y2≤1

To summarize:
1.	Generate n 2D points where each point is represented by two uniformly distributed random numbers over

the [0,1) interval.

2.	Count the number of points that fall into sector S.

3.	Calculate the approximate value of π using the previous formula.

Reference C++ Example of π Estimation

Let’s consider a function estimate_pi that takes a number of 2D points n_points and performs

the computation described above:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/oneapi

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

40The Parallel Universe

This example uses RNG functionality from the C++ 11 standard. In Step 1, we initialize the RNG by

creating two instances: engine and distribution. The engine holds a state of a generator and provides

independent and identically distributed random variables. distr describes transforming generator output

with statistics and parameters. In this example, uniform_real_distribution produces random floating-

point values, uniformly distributed in the interval [a, b).

In Step 1.2, random numbers are obtained by passing the engine to an operator() distribution. A single

floating-point variable is obtained. The loop fills vectors x and y with random numbers. In Step 2, each

(x, y) position is checked to determine how many points fall into the S sector. The result is stored

in the n_under_curve variable. Finally, the estimated π value is calculated and returned to the main

program (Step 3).

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

41The Parallel Universe

oneMKL Beta DPC++ Example of π Estimation
Now let’s modify the previous estimate_pi function and add cl::sycl::queue. DPC++ lets you

choose a device to run on using a selector interface:

cl::sycl::queue is an input argument to oneMKL beta functions. The library’s kernels are submitted

in this queue, with no code changes required to switch between devices (i.e., host or accelerator). CPU and

GPU devices are available in the oneMKL beta release.

Instead of std::vector, cl::sycl::buffer is used to store the random numbers:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://spec.oneapi.com/oneAPI/Elements/dpcpp/dpcpp_root.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

42The Parallel Universe

Buffers manage data transfer between the host application and device kernels. The buffer and accessor

classes are responsible for tracking memory transfers and guaranteeing data consistency across the

different kernels.

In Step 1, oneMKL beta RNG APIs also initialize two entities (the RNG engine and random number

distribution) as shown in Step 1.1. engine takes cl::sycl::queue and an initial SEED value as input to

the constructor. The distribution mkl::rng::uniform has template parameters for the type of output

values and method used to transform the engine’s output (see the Intel® oneAPI Math Kernel Library
Data Parallel C++ Developer Reference for details) and distribution parameters.

The mkl::rng::generate function is called at Step 1.2 to obtain random numbers. This function

takes the distribution and engine created in the previous step, the number of elements to be generated,

and storage for the result in buffers. The oneMKL beta RNG API mkl::rng::generate() is vectorized.

Vector library subroutines often perform better than scalar routines. (See Intel® oneMKL Vector Statistics
Notes for details.)

In Step 2, the random numbers are postprocessed on the host. Host accessors for buffers are created to

access the data:

Other steps are the same as in the C++ reference example.

Extended oneMKL Beta DPC++ Example of π Estimation
We can optimize Step 2 in the previous example using the DPC++ Parallel STL function. This approach

reduces data transfer between the host and device, which improves performance. The modification to

Step 2 is as follows:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/onemkl-developer-reference-c
https://software.intel.com/en-us/onemkl-developer-reference-c
https://software.intel.com/en-us/node/810895
https://software.intel.com/en-us/node/810895

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

43The Parallel Universe

The zip iterator provides a pair of random numbers as input to the count_if function. Other steps are

the same as in the previous oneMKL beta DPC++ example.

Unified Shared Memory (USM)-Based Example of oneMKL Beta
DPC++ π Estimation
There are two approaches to DPC++ pointer-based memory management: cl::sycl::malloc and

cl::sycl::usm_allocator (find more details here).

cl::sycl::malloc allows you to allocate memory directly on the host or device, or to access memory

from both the host and device:

When you use this memory allocation, you get all the advantages of pointer arithmetic as well. This

approach requires you to free any allocated memory.

The cl::sycl::usm_allocator approach allows you to work with standard or user containers without

worrying about direct memory control:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/USM/USM.adoc

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

44The Parallel Universe

Generation is performed in the same way, but instead of cl::sycl::buffer<float, 1>, float* is used:

Each function returns a cl::sycl::event that can be used for synchronization. You can call wait()

or wait_and_throw() functions for these events or for the entire queue. This allows manual control of

data dependencies between DPC++ kernels by calling event.wait() or queue.wait() functions.

To obtain random numbers and to count points in Step 2, you can use vectors/pointers nativelywithout

creating host accessors:

Heterogeneous Execution of oneMKL Beta DPC++ π Estimation
We can modify the previous examples to offload part of the computation to an accelerator instead of

doing the entire computation on the host. The APIs stay the same. You just need to choose the device for

cl::sycl::queue. Two queues are needed for parallel execution on different devices:

You can also allocate memory separately. CPU allocation can be done directly on the host:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

45The Parallel Universe

oneMKL beta RNG engines should be constructed for the exact type of device, so two objects are required.

The second engine may be initialized with another seed, or should continue the sequence offset by

n_points. (See RNGs in parallel computations in Intel® MKL Vector Statistics Notes for details.)

Generation and postprocessing may be called as in the previous examples. In this example,

std::count_if is used on a host with a parallel execution policy:

This approach allows balancing work between devices and/or completes different tasks in parallel on

any supported devices within a single API.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/node/810895

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

46The Parallel Universe

Performance Comparison
Figure 2 compares the oneMKL beta DPC++ and Extended oneMKL beta DPC++ examples.

2 Performance comparison

Hardware and software parameters:

	• Hardware: Intel® Core™ i9-9900K processor @ 3.60GHz, Intel® Gen12LP HD Graphics, NEO Graphics NEO

	• Operating system: Ubuntu* 18.04.2 LTS

	• Software: oneMKL beta

Simulation parameters:

	• Number of generated 2D points: 108

	• Random number engine: mkl::rng::philox4x32x10
	• Random number distribution: Uniform single-precision

	• Measurement region: Computational part of estimate_pi() functions (without memory allocation
overhead)

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

47The Parallel Universe

Speeding Up Performance
We’ve demonstrated different oneMKL beta DPC++ usage models applied to π estimation by MC

simulations. Slightly modifying the reference C++ example will let you use DPC++ features and oneMKL

beta functions to execute code on the different supported devices, including heterogeneous execution.

Reducing data transfer between the host and device can significantly improve performance, as shown in

Figure 2.

References
1.	Knuth, Donald E. The Art of Computer Programming, Volume 2, Seminumerical Algorithms, 2nd edition,

Addison-Wesley Publishing Company, Reading, Massachusetts, 1981.

More Adventures in Graph Analytics Benchmarking
BY HENRY GABB

If you’ve read my last two blogs, Measuring Graph Analytics Performance and Adventures in Graph Analytics
Benchmarking, you know that I’ve been harping on graph analytics benchmarking a lot lately. You also know
that I use the GAP Benchmark Suite from the University of California, Berkeley, because it's easy to run, tests
multiple graph algorithms and topologies, provides good coverage of the graph analytics landscape—and, most
important—gives comprehensive, objective, and reproducible results.

blog Highlights

Read on >

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/blogs/2019/12/16/more-adventures-in-graph-analytics-benchmarking
https://software.intel.com/en-us/user/335132
https://software.intel.com/en-us/blogs/2019/10/17/measuring-graph-analytics-performance
https://software.intel.com/en-us/blogs/2019/10/30/adventures-in-graph-analytics-benchmarking
https://software.intel.com/en-us/blogs/2019/10/30/adventures-in-graph-analytics-benchmarking
http://gap.cs.berkeley.edu/benchmark.html
https://software.intel.com/en-us/blogs/2019/12/16/more-adventures-in-graph-analytics-benchmarking

How’d They Do That?

Developers worldwide have upped the ante for
application performance, scalability, and portability

with Intel® Software Development Tools.
And they’re sharing their stories

to help you do the same.

Explore > Software
For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.
Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
© Intel Corporation

https://software.intel.com/en-us/articles/sdp-case-studies#Intel Parallel Studio
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

49The Parallel Universe

Venkat Krishnamurthy, Product Vice President, and Kathryn Vandiver, Senior Director, Platform 	
and Core Engineering, OmniSci

Unifying Data Science with Traditional Analytics on Modern Hardware

Bringing Accelerated Analytics at Scale
to Intel® Architecture

OmniSci has a vision of pioneering modern hardware and software to allow for data insights at

the speed of curiosity. One catalyst for this effort is today’s open data science stack, a platform for

experimentation. Through our shared vision and collaboration with Intel, we’re working to advance and

unify the worlds of data science with traditional analytics on modern hardware. In this article, we’ll look

at the relationship between data science applications and data discovery and explain how OmniSci

and Intel are working together to advance innovation in this ecosystem.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

50The Parallel Universe

It’s clear that we now live in a world where artificial intelligence (AI) is rapidly extending human

perception and intuition. Our colleagues at Intel also see this shift, and the natural progression

of AI, as part of the continuum of ways for people to understand the world through data. It’s

useful to think of a natural “loop” in how this understanding develops (Figure 1), going from data

exploration with visual analytics tools (since there’s no match for human visual perception to

quickly understand trends in data), to experimentation, where a data scientist builds models, and

finally to explanation, where both visual analytics tools and machine learning methods combine to

reveal key insights in a seamless workflow.

1 The loop of understanding

Today’s open data science stack is a platform for experimentation, founded on interlocking open

source innovation across multiple ecosystems:
	• The Python* and PyData* stack (Numpy*/SciPy*)

	• Pandas*

	• MatPlotLib*

	• Dask*

	• Numba*

	• The R language and its thriving ecosystem

	• The Julia* language

	• The Jupyter* and JupyterLab* project

These components lower the cost of curiosity and help drive interactive computing in general, and

data-driven storytelling in particular. As an example, Figure 2 shows the first-ever photograph of a

black hole, coming to life inside a Jupyter notebook, powered by these tools.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

51The Parallel Universe

2 Photographing a black hole (learn more here)

Back in 2017, when OmniSci was still known as MapD, we recognized the need to be part of this

world and contribute to its growth. In-memory databases and dataframes are becoming essential

technology, serving as an entry point for any type of data in the preparation, preprocessing,

extraction, transformation, and loading phases of end-to-end analytics.

For a Python-powered end-to-end analytics pipeline, there are libraries, like Pandas, that have

functional power but lack optimizations for Intel® architecture. This means there’s a need for an open-

source, performant framework that can harnesses the computing power of existing and emerging

Intel® hardware. Our collaboration with Intel allows OmniSciDB* to be the basis for such a framework.

Pandas is a critical component of the PyData ecosystem, and we decided it would be

counterproductive to replicate its entire API. Instead, we believe a great deal of Pandas’ value lies

in its powerful, expressive way of evaluating analytic expressions on an in-memory dataframe. This

is how OmniSciDB query execution works already, so the problem became one of finding

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
http://www.blog.pythonlibrary.org/2019/04/11/python-used-to-take-photo-of-black-hole/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

52The Parallel Universe

(or building) an API that was familiar and “pythonic” while leveraging OmniSciDB underneath.

As a next step in this process, working with Intel, we’re putting in place a common dataframe

for OmniSci that allows for a scalable and performant workflow execution within the open data

science ecosystem.

As it turns out, Wes McKinney, the creator of Pandas, had already started down this road with Ibis*,

whose stated goal is to take the productivity that Pandas provides and adapt it to a higher level of

scalability using languages such as SQL*. Ibis, as we’re discovering, is an absolute delight to use—

especially paired with OmniSci’s speed and scale. The deferred expression model makes it really

easy to perform complex analytics on any backend that’s accessible via SQL (and, in a nice twist,

Pandas itself). By aligning on a consistent dataframe and Python bindings, the creation of a scalable

workflow with OmniSci and Pandas can now become a high-performance backend with Ibis.

Figure 3 shows Ibis at work on a telematics dataset with 1.45 billion rows where we’re setting

up an aggregate expression and evaluating it, producing a Pandas dataframe as a result. The

expression is lazily evaluated. Ibis compiles it into a SQL query and then executes it only when

needed. Also, notice that the response is close to instantaneous, even running against an OmniSci

server in our data center over a VPN.

3 Ibis on a dataset with 1.45 billion rows

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://docs.ibis-progect.org/
https://github.com/ibis-project/ibis/tree/master/ibis

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

53The Parallel Universe

Thanks to this new Python API, we can already direct Ibis output to Apache Arrow*-based data

frames memory using Pandas. Work is underway, in conjunction with Intel data scientists and

machine learning experts, to continue to reduce the overhead of the interface with further

acceleration on Intel® Xeon® Scalable processors with our internal result set format.

(Here’s a pretty cool aside: This Ibis- and Pandas-supported backend means you can do analysis

across data sources inside a single JupyterLab notebook with one API. Simply create a connection

over any of these backends and you can run Ibis expressions against them. Also, because the

returned results for remote backends default to Pandas, you can wrap an Ibis connection around

that Pandas dataframe. The possibilities are endless.)

 There and Back Again
Finally, we’ve worked on pymapd, too, keeping up with the breathless pace of change on

underlying projects (particularly Apache Arrow). A data scientist can now use all these tools and

produce a dataframe that, as always, can be loaded into OmniSci via the load_table APIs in

pymapd (and Ibis). The icing on the cake is OmniSci Immerse’s Visual Data Fusion (VDF) feature

announced in OmniSci 4.7, which lets a user set up charts (combo and multi-layer geo charts for

now) across multiple tables/sources.

 Putting it All Together
A key point bears repeating: We’ve developed each one of the capabilities we’ve discussed within

the respective open source project communities rather than simply forcing them to develop their

own. Our work on Ibis and Pandas is available to everyone involved with those communities.

OmniSciDB itself is open source, as it has been for more than two years. We’ve also invested

deeply in the packaging/installation aspects so that users can easily add OmniSci to their data

science workflows in multiple ways.

We took care to package everything with Docker*. Our JupyterLab image includes all the

tools you need to get started. As a matter of fact, you can download and try the whole setup,

including OmniSciDB, on your Mac* or Linux* laptop. We use Anaconda* for Python package

management, so you can download and install OmniSciDB itself from Conda forge with 	

conda install -c conda-forge omniscidb-cpu, and then the PyData tools for OmniSci

with conda install -c conda-forge omnisci-pytools. Alternatively, you can get a

prebuilt version of OmniSci from our downloads page.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable.html
https://docs.ibis-project.org/getting-started.html#pandas-quickstart
https://github.com/omnisci/pymapd
https://www.omnisci.com/platform/downloads/open-source/os-cpu

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

54The Parallel Universe

 Looking Back, Looking Forward
Let’s give credit where it’s due. None of these new capabilities would’ve seen the light of day without

the work and guidance of our open source collaborators, including those at Intel. Ultimately, we

believe cutting-edge methods in data science—or, for that matter, the plumbing—are in the service

of the user, not the other way around. As far as a consumer of insights is concerned, we think it’s

better to have the entire assembly of tools become invisible, but ensure the insights and their

explanations become obvious. Through our shared vision, we’re working to advance and unify the

world of data science with traditional analytics on modern hardware.

Intel Bringing oneAPI to Gaming, Demoes Rendering Toolkit		
for Graphics
BY ARNE VERHEYDE, TOM'S HARDWARE

As part of its Virtual Game Developers Conference (GDC) 2020, Intel has put a presentation online
detailing the features of its oneAPI Rendering Toolkit that are applicable for games. These libraries
include Embree*, OSPRay*, Open VKL*, OpenSWR* and Open Image Denoise. Intel also announced that
some will receive GPU support soon.

NEWS Highlights

Read on >

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.tomshardware.com/news/intel-bringing-oneapi-to-gaming-rendering-toolkit-xe-graphics
https://software.intel.com/en-us/blogs/2019/12/16/more-adventures-in-graph-analytics-benchmarking

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

55The Parallel Universe

Dmitri Goloubentsev, Head of Automatic Adjoint Differentiation, Matlogica, and Evgeny Lakshtanov,
Principal Researcher, Department of Mathematics, University of Aveiro, Portugal and Matlogica LTD

If you’re interested in high-performance computing, high-level, object-oriented languages aren’t the

first things that come to mind. Object abstractions come with a runtime penalty and are often difficult

for compilers to vectorize. Adapting your code for multithreading execution is a huge challenge, and

the resulting code is often a headache to maintain.

You’re in luck if performance-critical parts of your code are localized and can be flattened and safely

parallelized. However, many performance-critical problems can benefit from object-oriented programming

abstractions. We’re proposing a different programming model that lets you achieve top performance on

single instruction multiple data (SIMD), non-uniform memory access (NUMA) multicore systems.

Getting Top Performance on Modern Multicore Systems

A New Approach to Parallel Computing
Using Automatic Differentiation

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

56The Parallel Universe

Operator Overloading for Valuation Graph Extraction
We’ll focus on problems where the same function, F(1), needs to be executed on a data set X[i].

For example, let’s look at Monte Carlo simulations in the finance world where X[i] is a random

sample and F(.)is a pricing function (Figure 1). We use an operator overloading pattern to extract

all primitive operations performed by F(.).

1 Example operator overloading pattern

This pattern is very common in automatic adjoint differentiation (AAD) libraries. Unlike traditional

AAD libraries, we don't build a data structure to represent the valuation graph. Instead, we compile

binary machine code instructions to replicate valuations as defined in the graph, which can be seen

as a just-in-time (JIT) compilation. However, we don't work with the source code directly. Instead,

we compile a valuation graph produced by the user's algorithm. Since we want to apply F(.) to a

large set of data points, we can compile this code to expand all scalar operations to full SIMD vector

operations and process four (AVX2) or eight (AVX-512) data samples in parallel.

Learn by Example
Let's look at a simple option pricing framework where we use various abstract business objects. In

this example, we simulate asset values as a random process:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://en.wikipedia.org/wiki/Operator_overloading
https://en.wikipedia.org/wiki/Automatic_differentiation#Operator_overloading_(OO)

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

57The Parallel Universe

The classes BankRate and AssetVolatility can define different ways of computing model

parameters, and implementation can be done deep in the derived classes. This function can be used with

the native double type. When applied along timepoints, t[i] can be used to simulate asset value at the

option expiry:

However, this leads to bad performance because the compiler can’t effectively vectorize the code and

business objects may contain virtual function calls. Using the AAD runtime compiler, we can execute the

function, record one random path of asset evolution, and compute option intrinsic value at the expiry:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

58The Parallel Universe

At this stage, the func object contains compiled, vectorized machine code that replicates valuations to

produce the final payoff output value given the arbitrary random_samples vector as input. The function

object remains constant after recording and requires memory context for execution:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

59The Parallel Universe

Free Multithreading
Making efficient and safe multithreaded code can be difficult. Notice that the recording happens only

for one input sample and can be executed in the controlled, stable, single-threaded environment. The

resulting recorded function, however, is threadsafe and only needs separate workspace memory allocated

for each thread. This is a very attractive property, since it lets us turn non-multi-thread-safe code into

something that can be safely executed on multicore systems. Even optimal NUMA memory allocation

becomes a trivial task. (You can view the full code listing for the multithreaded example here.)

Automatic Differentiation
This technique not only accelerates your function, it can also create an adjoint function to compute

derivatives of all inputs with respect to all outputs. This is similar to the back-propagation algorithm

used for deep neural network (DNN) training. Unlike DNN training libraries, this approach works for

almost any arbitrary C++ code. To record an adjoint function, simply mark which input variables are

required for differentiation:

Finally, to execute the adjoint function, initialize the gradient values of outputs and call the reverse()

method on the function object:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://github.com/matlogica/pum-example

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

60The Parallel Universe

Getting Top Performance
Hardware is evolving toward increasing parallelism with a lot more cores, wider vector registers, and

accelerators. For object-oriented programmers, it’s hard to adapt single-threaded code to existing parallel

methods like OpenMP and CUDA. Using the AADC tool from Matlogica, programmers can turn their

object-oriented, single-threaded, scalar code into AVX2/AVX512 vectorized, multithreaded, and threadsafe

lambda functions. Crucially, the AADC tool can also generate a lambda function for the Adjoint method of

computing, with all required derivatives using the same interface. Visit Matlogica for more details and a

demo version of AAD-C.

Acknowledgements
Evgeny Lakshtanov is partially supported by Portuguese funds through the Center for Research and

Development in Mathematics and Applications (CIDMA) and the Portuguese Foundation for Science and

Technology (FCT, Fundação para a Ciência e a Tecnologia), within project UIDP/04106/2020.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://matlogica.com/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

61The Parallel Universe

James Reinders, Founding Editor and Editor Emeritus of The Parallel Universe

[Editor’s Note: This article was originally published in The Parallel Universe issue #1, back in April 2009.

To celebrate our anniversary, we’re reprinting it here to show that James’ advice is still timely, relevant,

and prescient 11 years later.]

Programming for multicore processors poses new challenges. Here are eight rules for multicore

programming to help you be successful.

There are Some Consistent Rules that can Help you Solve the Parallelism
Challenge and Tap Into the Potential of Multicore

8 Rules for Parallel Programming
for Multicore

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

62The Parallel Universe

Rule 1: Think Parallel
Approach all problems looking for the parallelism. Understand where parallelism is and organize your

thinking to express it. Decide on the best parallel approach before other design or implementation

decisions. Learn to “think parallel.”

Rule 2: Program Using Abstraction
Focus on writing code to express parallelism, but avoid writing code to manage threads or processor

cores. Libraries, OpenMP, and Threading Building Blocks are all examples of using abstractions. Do not

use native threads (Pthreads*, Windows* threads, Boost* threads, and the like). Native thread libraries

are the assembly languages for parallelism. They offer maximum flexibility but require too much time

to write, debug, and maintain. Your programming should be at a high enough level that your code is

about your problem, not about thread or core management.

Rule 3: Program in Tasks (Chores), Not Threads (Cores)
Leave the mapping of tasks to threads or processor cores as a distinctly separate operation in your

program, preferably an abstraction you are using that handles thread/core management for you.

Create an abundance of tasks in your program, or a task that can be spread across processor cores

automatically (such as an OpenMP loop). By creating tasks, you are free to create as many as you can

without worrying about oversubscription.

Rule 4: Design with the Option to Turn Concurrency Off
To make debugging simpler, create programs that can run without concurrency. This way, when

debugging, you can run programs first with—then without—concurrency to see if both runs fail or

not. Debugging common issues is simpler when the program is not running concurrently because it

is more familiar and better supported by today’s tools. Knowing that something fails only when run

concurrently hints at the type of bug you are tracking down. If you ignore this rule and can’t force your

program to run in only one thread, you’ll spend too much time debugging. Because you want to have

the capability to run in a single thread specifically for debugging, it doesn’t need to be efficient. You

just need to avoid creating parallel programs that require concurrency to work correctly, such as many

producer-consumer models.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

63The Parallel Universe

Rule 5: Avoid Using Locks
Simply say “no” to locks. Locks slow programs, reduce scalability, and are the source of many bugs in parallel

programs. Make implicit synchronization the solution for your program. If you still need explicit synchronization,

use atomic operations. Use locks only as a last resort. Work hard to design programs that don’t need locks.

Rule 6: Use Tools and Libraries Designed to Help with Concurrency
Don’t “tough it out” with old tools. Be critical of tool support with regard to how it presents and interacts

with parallelism. Most tools are not yet ready for parallelism. Look for thread-safe libraries—ideally, ones

that are designed to utilize parallelism themselves.

Rule 7: Use Scalable Memory Allocators
Threaded programs need to use scalable memory allocators. Period. There are a number of solutions,

and I’d guess that all of them are better than malloc(). Using scalable memory allocators speeds up

applications by eliminating global bottlenecks, reusing memory within threads to better utilize caches, and

partitioning properly to avoid cache line sharing.

Rule 8: Design to Scale Through Increased Workloads
The amount of work your program needs to handle increases over time. Plan for that. Designed with

scaling in mind, your program will handle more work as the number of processor cores increases. Every

year, we ask our computers to do more and more. Your designs should favor using increases in parallelism

to give you advantages in handling bigger workloads in the future.

Getting the Most Out of Multicore Processors
I wrote these rules with implicit mention of threading everywhere. Only Rule 7 is specifically related to

threading. Threading is not the only way to get value out of multicore. Running multiple programs or

multiple processes is often used, especially in server applications.

These rules will help you get the most out of multicore processors. Some will grow in importance over

the next 10 years as the number of processor cores increases and we see an increase in the diversity of

the cores themselves. The coming of heterogeneous processors and NUMA, for instance, will make Rule

3 more and more important. [Editor’s note: The emphasis is mine. James was already thinking about

heterogeneous parallelism in the first issue of The Parallel Universe.]

You should understand all eight rules and take them to heart.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Lift Your
Coding to the
Next Level
It’s easier to build great things
with our free code samples.
To get started, just tell us your
interest, tool, or hardware.

For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.
Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
© Intel Corporation

Get Started >
Software

https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/code-samples

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

65The Parallel Universe

Review by Ruud van der Pas, Senior Principal Software Engineer, Oracle Corporation

OpenMP* provides an application programming interface (API) for shared-memory parallel computing.

It consists of compiler directives, library routines, and environment variables. These are all available to

the developer to define and control parallel execution. The OpenMP specification has evolved since

1997 to keep up with the trends in hardware architectures and programming languages. This is a

positive development, but the current functionality and features can be overwhelming for the developer

interested in getting started with OpenMP. The book The OpenMP Common Core by Timothy G. Mattson,

Yun (Helen) He, and Alice Konigs helps address this issue by defining the idea of a “common core.”

Making OpenMP Simple Again

Book Review: The OpenMP* Common Core
By Timothy G. Mattson, Yun (Helen) He, and Alice Konigs

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

66The Parallel Universe

The common core, as the authors define it, is a compact subset of the OpenMP API, ideally suited to

get new users started. The core functionality presented in this book is sufficient to parallelize many

applications using OpenMP, but for those who require additional functionality, it provides pointers to

additional reading material. While it’s assumed the reader has basic programming skills in C, C++, or

Fortran*, no background in parallel computing is required.

The book is organized in three parts:

1.	Setting the Stage

2.	The OpenMP Common Core

3.	Beyond the Common Core

Setting the Stage
The first part covers the prerequisites, introducing and explaining the relevant concepts in parallel

computing that readers need to understand what follows. An overview of various contemporary

parallel architectures is included as well. The history of OpenMP is also presented, which is helpful

to understand what OpenMP is today—and why a common core is needed. The inclusion of this first

part is helpful for readers new to parallel computing in general and OpenMP in particular. It eliminates

the need to consult other references and makes this a standalone book.

The OpenMP Common Core
With over 120 pages, the second part constitutes the bulk of the book. The authors discuss and

define the OpenMP common core. They do a good job of clearly explaining the concepts and

constructs that define this subset of the OpenMP API. Their approach is very practical, using

examples to illustrate the features and show how to apply them. Some of these examples, like the

numerical integration algorithm to approximate the value of π, are shown in full. These are small but

fully functional programs that are important to demonstrate how to transform a sequential program

into a correct OpenMP program. The devil is often in the details, so the authors cover potential pitfalls

throughout the book.

The OpenMP data model is one of the harder things for newcomers to master. This is mostly because

in a sequential application, you don’t have to think about it. However, it’s vital to shared-memory

parallel programming. The coverage of this topic is nothing short of excellent. The authors help take

away the fear and confusion of going from a single-threaded to multithreaded program. Even more

experienced OpenMP developers may find this section useful.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

67The Parallel Universe

There’s another element that differentiates this book from others. Many OpenMP books don’t go beyond

parallel loops. For several classes of parallel algorithms, we need a different form of parallelism—one

that’s more asynchronous and dynamic. In OpenMP, support for this is provided through the concept

of tasks. The book thoroughly covers OpenMP tasks, including several code examples. To my pleasant

surprise, the data environment with tasks is also explained very clearly. This isn’t an easy topic to

understand, but the authors do a very good job of explaining it.

Every OpenMP developer must have a good understanding of the memory model. This is specific to

OpenMP and a rather complex part of the specification. The chapter covering this topic is a true gem.

It also clearly introduces memory consistency, another difficult topic for users new to shared-memory

parallel programming. I haven’t read a better description of these topics.

The second part ends with a recap of the OpenMP common core. Initially, I wondered whether this was

redundant, but it isn’t. Assuming readers have digested the previous chapters, this part provides a good

reference. It makes it easier to look things up and to find details covered in earlier chapters. This is where

it all comes together, and the dots are connected. Also, the authors introduce some nuances on the use of

certain features here.

Beyond the Common Core
The third and last part of the book covers what developers may need beyond the constructs that

constitute the OpenMP common core (e.g., additional clauses, more runtime functions, atomic operations,

and locking). By design, the coverage is brief, but the authors include pointers to more information. You

may wonder why these features aren’t part of the common core. The reason is that not every developer

needs these features. They’re more specific to the algorithm being parallelized.

A relatively large section in this third part is dedicated to the important topic of non-uniform memory

access (NUMA). Although NUMA is a performance feature and not related to writing a correct OpenMP

program, it’s good to see it covered in this book. NUMA is mentioned earlier in the book, but the surface

is barely scratched. Here, the authors discuss it in detail, including what a contemporary memory system

looks like and how this can affect the performance of an application. OpenMP has provided support for

NUMA since version 4.0 of the specification was released in 2013. The features available to the user to

control data placement and thread affinity are explained and illustrated with several examples.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

68The Parallel Universe

The last part of this section provides useful pointers and more information. For instance, it explains how

to read and understand the OpenMP specifications. The specs are available free of charge, but with over

600 pages in the current spec, it’s quite a volume. It also targets the implementer rather than the end user.

This can make the text hard to understand if you’re not a compiler guru. Sometimes you need to check the

specifications, though, and this section helps readers to find their way.

Not only novice OpenMP developers will find this book extremely useful. More experienced developers

will find enough nuggets scattered throughout the chapters to warrant having a copy.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Software

The Parallel
Universe

		 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For
more complete information visit www.intel.com/benchmarks. Configuration: Refer to Detailed Workload Configuration Slides in this presentation. Performance results are based on
testing as of March 11th and March 25th 2019 and may not reflect all publicly available security updates. See configuration disclosures for details. No product can be absolutely secure.
*Other names and brands may be claimed as property of others.

		 Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other
sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit www.intel.com/bench-
marks.

		 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system
configuration.

		 Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include
SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchi-
tecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by
this notice. Notice Revision #20110804

		 Intel® Advanced Vector Extensions (Intel® AVX)* provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing AVX instructions
may cause a) some parts to operate at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Perfor-
mance varies depending on hardware, software, and system configuration and you can learn more at http://www.intel.com/go/turbo.

		 Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data
are accurate.

		 This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel repre-
sentative to obtain the latest forecast, schedule, specifications and roadmaps.

		 The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are available
on request.

		 Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.
		 Copyright © 2020 Intel Corporation. All rights reserved. Intel, Xeon, Xeon Phi, VTune, OpenVINO, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

 		 * Other names and brands may be claimed as the property of others.		 Printed in USA		 0420/SS	 	 Please Recycle

