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3The Parallel Universe

Happy New Year

Welcome to another year of The Parallel Universe. 2020 promises to be interesting. Some 
readers may know that I used to dread the trend toward heterogeneous computing. Then I 
came to accept it as inevitable. Now, I’m embracing it. Sure, heterogeneity is both a blessing 
and a curse. The blessing is better performance and efficiency. The curse is increased 
complexity. My hope is that someday machines will just take care of it for me (see Why 
More Software Development Needs to Go to the Machines), but until then, practical 
steps are being taken to minimize this complexity, starting with oneAPI. oneAPI is an 
open specification that describes a single software abstraction across diverse compute 
architectures.

The Intel implementation of oneAPI was recently announced by Raja Koduri (senior 
vice president, chief architect, and general manager of Intel Architecture, Graphics, and 
Software) at the Intel® HPC Developer Conference. Our feature article, Heterogeneous 
Programming Using oneAPI, gives an overview of this unified, standards-based approach 
to heterogeneous computing. Accelerating Compression on Intel® FPGAs shows how Data 
Parallel C++ makes FPGAs more accessible. Continuing this theme of heterogeneity, Is Your 
Game GPU-Bound? shows you how to answer this question using analysis tools like Intel® 
Graphics Performance Analyzers.

In the last issue, I briefly covered composable threading in the Julia* programming 
language. Jameson Nash and Jeff Bezanson from Julia Computing, Inc., and Kiran Pamnany 
from Caltech, were kind enough to provide a more detailed look at the New Threading 
Capabilities in Julia v1.3 for this issue. They walk through several code examples illustrating 
task parallelism using Julia.

We close this issue with three articles on data analytics. The first, Fast Gradient Boosting 
Tree Inference for Intel® Xeon® Processors, shows how to use the XGBoost* library to 

3The Parallel Universe

LETTER FROM THE EDITOR
Henry A. Gabb, Senior Principal Engineer at Intel Corporation, is a longtime high-performance and 
parallel computing practitioner who has published numerous articles on parallel programming. He 
was editor/coauthor of “Developing Multithreaded Applications: A Platform Consistent Approach” 
and program manager of the Intel/Microsoft Universal Parallel Computing Research Centers.

Welcome to the Era of oneAPI
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improve the performance of model predictions. If you recall, the feature article in our last 
issue covered performance improvements for XGBoost training. The second, K-means 
Acceleration with 2nd Generation Intel® Xeon® Scalable Processors, shows how to 
take advantage of optimizations in Intel® Distribution for Python* and the Intel® Data 
Analytics Acceleration Library to do k-means clustering. Finally, in Measuring Graph 
Analytics Performance, I discuss the right ways―and wrong ways―to do graph analytics 
benchmarking. However, the graph analytics landscape is large and varied, so please let me 
know if you disagree with my assertions.

Expect to see more articles on oneAPI in future issues. And, as always, don’t forget to 
check out Tech.Decoded for more information on Intel’s solutions for code modernization, 
visual computing, data center and cloud computing, data science, and systems and IoT 
development.

Henry A. Gabb

January 2020

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/sites/default/files/managed/c1/ce/parallel-universe-issue-38.pdf
https://software.intel.com/sites/default/files/managed/c1/ce/parallel-universe-issue-38.pdf
https://software.intel.com/en-us/distribution-for-python
https://software.intel.com/daal
https://software.intel.com/daal
https://techdecoded.intel.io/


Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

5The Parallel Universe

Nitya Hariharan, Application Engineer; Rama Kishan Malladi, Performance Modeling Engineer; 
Amarpal S. Kapoor, Technical Consulting Engineer; Kevin P O’Leary, Technical Consulting 
Engineer; Intel Corporation

Getting the maximum achievable performance out of today’s hardware is a fine balance between 

optimal use of underlying hardware features and using code that is portable, easily maintainable, 

and power-efficient. These factors don't necessarily work in tandem. They require prioritizing based 

on user needs. It's non-trivial for users to maintain separate code bases for different architectures. A 

standard, simplified programming model that can run seamlessly on scalar, vector, matrix, and spatial 

architectures will give developers greater productivity through increased code reuse and reduced 

training investment.

How to Deliver Uncompromised Performance for Diverse Workloads Across 
Multiple Architectures

Heterogenous Programming Using oneAPI
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oneAPI is an industry initiative designed to deliver these benefits. It’s based on standards and open 

specifications and includes the Data Parallel C++ (DPC++) language as well as a set of domain libraries. 

The goal of oneAPI is for hardware vendors across the industry to develop their own compatible 

implementations targeting their CPUs and accelerators. That way, developers only need to code in a single 

language and set of library APIs across multiple architectures and multiple vendor devices.

The Intel beta oneAPI developer tools implementation, targeting Intel® CPUs and accelerators, 

consists of the Intel® oneAPI Base Toolkit along with multiple domain specific toolkits—Intel® HPC, 

IoT, DL Framework Developer, and Rendering toolkits—which cater to different users. 

Figure 1 shows the different layers that are part of the beta Intel oneAPI product and the Base 

Toolkit, which consists of the Intel oneAPI DPC++ Compiler, the Intel® DPC++ Compatibility Tool, 

multiple optimized libraries, and advanced analysis and debugging tools. Parallelism across 

architectures is expressed using the DPC++ language, which is based on SYCL* from Khronos Group. 

It uses modern C++ features along with Intel-specific extensions for efficient architecture usage. 

DPC++ language features allow code to be run on the CPU and to be offloaded onto an available 

accelerator—making it possibled to reuse code. A fallback property allows the code to be run on the 

CPU when an accelerator isn't available. The execution on the host and accelerator, along with the 

memory dependencies, are clearly defined. 

Users can also port their codes from CUDA* to DPC++ using the Intel DPC++ Compatibility Tool. It assists 

developers with a one-time migration and typically migrates 80 to 90% of the code automatically.

In addition to DPC++, the Intel oneAPI HPC Toolkit supports OpenMP* 5.0 features that allow code 

to be offloaded onto a GPU. Users can either transition to using DPC++ or make use of the offload 

features on their existing C/C++/Fortran code. API-based programming is supported through a set of 

libraries (e.g., the Intel® oneAPI Math Kernel Library), which will be optimized for Intel GPUs.

The beta Intel oneAPI product also offers new features in Intel® VTune™ Profiler1 and Intel® Advisor2, 

which allow users to debug their code and look at performance-related metrics when code is 

offloaded onto an accelerator.

Learn
MoreIntel® ADVISOR

Optimize Code for Modern Hardware
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1 Components of the Beta Intel® oneAPI Base toolkit

This article introduces the beta release of the oneAPI product to facilitate heterogeneous programming. 

We’ll introduce the oneAPI software model and then discuss the compilation model and the binary 

generation procedure. oneAPI provides a single binary for all architectures, so the compile and link steps 

are different from normal methods of binary generation. Finally, we’ll examine some sample programs. 

Note that we use the terms accelerator, target, and device interchangeably throughout this article.

oneAPI Software Model 
The oneAPI software model, based on the SYCL specification, describes the interaction between the host 

and device in terms of code execution and memory usage. The model has four parts:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en


Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

8The Parallel Universe

1.	A platform model specifying the host and device

2.	An execution model specifying the command queues and the commands that will be run on the device

3.	A memory model specifying memory usage between the host and device

4.	A kernel model that targets computational kernels to devices

Platform Model
The oneAPI platform model specifies the host and multiple devices that communicate with each other or 

the host. The host controls the execution of kernels on the devices and coordinates among them if there are 

multiple devices. Each device can have multiple compute units. And each compute unit can have multiple 

processing elements. The oneAPI specification can support multiple devices like GPUs, FPGAs, and ASICs as 

long as the platform satisfies the minimum requirements of the oneAPI software model. This typically means 

the hosts need to have a specific operating system, a specific GNU* GCC version, and certain drivers needed 

by the devices. (See the release notes for each oneAPI component for details on the platform requirements.)

Execution Model
The oneAPI execution model specifies how the code is executed on the host and device. The host 

execution model creates command groups to coordinate the execution of kernels and data management 

between host and devices. The command groups are submitted in queues that can be run with either an 

in-order or out-of-order policy. Commands within a queue can be synchronized to ensure data updates on 

the device are available to the host before the next command is executed. 

The device execution model specifies how the computation is done on the accelerator. The execution 

ranges over a set of elements that can either be a one-dimensional or multi-dimensional data set. This 

range is split into a hierarchy of ND-Range, work-groups, sub-groups, and work-items as shown in Figure 2 

for a three-dimensional case.

2 Relationship between ND-Range, work-groups, sub-groups and work-items

https://software.seek.intel.com/parallel-universe-magazine
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Note that this is similar to the SYCL model, with the exception of sub-groups, which are an Intel extension. 

The work-item is the smallest execution unit in the kernel. And the work-groups determine how data 

is shared among these work-items. These hierarchical layouts also determine the kind of memory that 

should be used to get better performance. For example, work-items typically operate on temporary data 

that’s stored in the device memory and work-groups use global memory. The sub-group classification 

was introduced to provide support for hardware resources that have a vector unit. This allows parallel 

execution on elements.

From Figure 2, it’s clear that the location of the work-group or work-item within ND-Range is important, 

since this determines the data point being updated within the computational kernel. The index into 

ND-Range that each work-item acts upon is determined using intrinsic functions in the nd_item class 

(global_id, work_group_id, sub_group_id, and local_id).

Memory Model
The oneAPI memory model defines the handling of memory objects by the host and device. It helps a 

user decide where memory will be allocated depending on the application’s needs. Memory objects are 

classified as type buffer or images. An accessor can be used to indicate the location of the memory object 

and the mode of access. The accessor provides different access targets for objects residing on the host, 

global memory on the device, the device’s local memory, or images residing on the host. The access types 

can be read, write, atomic, or read and write. 

The Unified Shared Memory model allows the host and device to share memory without the use of 

explicit accessors. Synchronization using events manages the dependencies between host and device. A 

user can either explicitly specify an event to control when data updated by a host or device is available for 

reuse, or implicitly depend on the runtime and device drivers to determine this.

Kernel Programming Model

The oneAPI kernel programming model specifies the code that’s executed on the host and device. 

Parallelism isn't automatic. The user needs to specify it explicitly using  language constructs. 

The DPC++ language requires a  compiler that can support C++11 and later features on the host side. 

The device code, however, requires a compiler that supports C++03 features and certain C++11 features 

like lambda expressions, variadic templates, rvalue references, and alias templates. It also requires 

std::string, std::vector, and std::function support. There are restrictions on certain features 

for the device code which include virtual functions and virtual inheritance, exception handling, run-time type 

information (RTTI), and object management employing new and delete operators. 

https://software.seek.intel.com/parallel-universe-magazine
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The user can decide to use different schemes to describe the separation between the host and device 

code. A lambda expression can keep the kernel code in line with the host code. A functor keeps the 

host code in the same source file, but in a separate function. For users who are porting OpenCL code, or 

those who require an explicit interface between the host and device code, the kernel class provides the 

necessary interface.

The user can implement parallelism in three different ways: 

•• A single task that executes the whole kernel in a single work-item

•• The parallel_for construct, which distributes the tasks among the processing elements

•• The parallel_for_work_group. The parallel_for_work_group construct distributes the 
tasks among the work-groups and can synchronize work-items within a work-group through the use of 
barriers.

oneAPI Compilation Model
The oneAPI compilation model consists of build and link steps. However, the binary generated needs to 

support the execution of the device code on multiple accelerators. This means a DPC++ compiler and 

linker have to carry out additional commands to generate the binary. This complexity is generally hidden 

from the user, but can be useful for generating target-specific binaries.

The host code compilation is done in the default way for a standard x86 architecture. The binary 

generation for the accelerator is more complex because it needs to support single or multiple 

accelerators in addition to optimizations that are specific to each accelerator. This accelerator binary, 

known as a fat binary, contains a combination of:

•• An intermediate Standard Portable Intermediate Representation (SPIR-V) representation, which is 
device-independent and generates a device-specific binary during compilation. 

•• Target-specific binaries that are generated at compile-time. Since oneAPI is meant to support 
multiple accelerators, multiple code forms are created.

Multiple tools generate these code representations, including the clang driver, the host and device 

DPC++ compiler, the standard Linux* (ld) or Windows* (link.exe) linker, and tools to generate the fat 

object file. During execution, the oneAPI runtime environment checks for a device-specific image within 

the fat binary and executes it, if available. Otherwise, the SPIR-V image is used to generate the target-

specific image.

https://software.seek.intel.com/parallel-universe-magazine
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oneAPI Programming Examples
In this section, we look at sample code for the beta Intel oneAPI DPC++ Compiler, OpenMP device offload, 

and the Intel DPC++ Compatibility Tool. 

Writing DPC++ Code
Writing DPC++ code requires a user to exploit the APIs and syntax of the language. Listing 1 shows some 

sample code conversion from C++ (CPU) code to a DPC++ (host and accelerator) code. It’s an implementation 

of the Högbom CLEAN* algorithm posted on GitHub4. The algorithm iteratively finds the highest value in 

the image and subtracts a small gain of this point source convolved with the point spread function of the 

observation until the highest value is smaller than some threshold. The implementation has two functions: 

findPeak and subtractPSF. These have to be ported from C++ to DPC++ as shown in Listings 1 and 2.

Listing 1. Baseline and DPC++ implementation of the subtractPSF code

https://software.seek.intel.com/parallel-universe-magazine
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Code changes required to port from C/C++ to DPC++ include:

•• Introduction of the device queue for a given device (using the device selector API)

•• Buffers created/accessed on the device (using the sycl::buffer/get_access APIs)

•• Invocation of the parallel_for to spawn/execute the computational kernel

•• Wait for the completion of the kernel execution (and optionally catch any exceptions)

•• Intel® DPC++ Compiler and flags: dpcpp -std=c++11 -O2 -lsycl -lOpenCL

Listing 2 shows the code changes for the findPeak function implementation. To better exploit parallelism in the 

hardware, DPC++ code has support for local_work_size, global_id/local_id, workgroup, and many 

other APIs, similar to the constructs used in OpenCL and OpenMP.

Listing 2. Baseline (top) and DPC++ (bottom) implementation of the findPeak code. clPeak is a 
structure of value and position data. Concurrent execution of work-groups is accomplished using 
the global and local IDs, and barrier synchronization across multiple threads (work-items) in a work-
group. The result of this parallel_for execution is further reduced (not shown) to determine the 
maximum value and position across work-groups.
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OpenMP Offload Support 
The beta Intel oneAPI HPC Toolkit provides OpenMP offload support, which enables users to take 

advantage of OpenMP device offload features. We look at a sample open-source Jacobi code3 written in 

C++ with OpenMP pragmas. The code has a main iteration step that: 

•• Calculates the Jacobi update

•• Calculates the difference between the old and new solution

•• Updates the old solution

•• Calculates the residual

The iteration code snippet is shown in Listing 3.

Listing 3. Sample Jacobi solver with OpenMP pragmas

Listing 4 shows the updated code with the omp target clause, which can be used to specify the data to be 

transferred to the device environment, along with a data modifier that can either be to, from, tofrom, or 

alloc. Since array b is not modified, we use the clause to. And since x and xnew are initialized before the 

offload directives and updated within the device environment, we use the tofrom clause. The reduction 

variables d and r are also set and updated during each iteration and have the tofrom map clause.

Listing 4. Sample Jacobi solver updated with OpenMP offload pragmas

https://software.seek.intel.com/parallel-universe-magazine
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To compile the offload target code with the oneAPI compiler, the user needs to set:

•• The environment variables pertaining to the compiler path

•• The relevant libraries

•• The different components

The path to these environment variables will depend on the oneAPI setup on the user machine. We look at 

the compilation process for now, which will be similar across machines, to demonstrate the ease of use of 

the specification. To compile the code, use the LLVM-based icx or icpc -qnextgen compiler as follows:

$ export OMP_TARGET_OFFLOAD=”MANDATORY”

$ export LIBOMPTARGET_DEBUG=1

$./jacobi

The -D__STRICT__ANSI flag ensures compatibility with GCC 7.x and higher systems. The spir64 flag refers 

to the target independent representation of the code and is ported to target-specific code during the link stage 

or execution. To execute the code, run these commands:

The MANDATORY option for OMP_TARGET_OFFLOAD indicates that the offload has to be run on the GPU. It's set 

to DEFAULT by default, which indicates offload can be run on CPU and GPU. The LIBOMPTARGET_DEBUG flag, 

when set, provides offload runtime information that helps in debugging. 

The OpenMP offload support example is for C/C++ programs, but Fortran offload is also supported. This allows 

HPC users with Fortran code bases to run their code on GPUs as well.

Intel DPC++ Compatibility Tool 
The Intel DPC++ Compatibility Tool is a command-line-based code migration tool available as part of the 

Intel oneAPI Base Toolkit. Its primary role is to enable the porting of existing CUDA sources to DPC++. Source 

locations where automatic migration isn't possible are flagged through suitable errors and warnings. The Intel 

DPC++ Compatibility Tool also inserts comments in source locations where user interventions are necessary.

Figure 3 shows a typical workflow that CUDA users can use to port their source code to DPC++. The Intel 

DPC++ Compatibility Tool currently supports the Linux* and Windows* operating systems. This article 

assumes a Linux environment. The Intel DPC++ Compatibility Tool currently requires header files that are 

shipped with CUDA SDK. To demonstrate the migration process, we use the VectorAdd sample from 

CUDA SDK 10.1, typically found in a location similar to:

$ ls /usr/local/cuda-10.1/samples/0_Simple/vectorAdd

$ icpc -fiopenmp -fopenmp-targets=spir64 -D__STRICT_ANSI__ jacobi.cpp -o 
jacobi
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3 Recommended workflow for migrating existing CUDA applications

VectorAdd is a single-source example with around 150 lines of code. The CUDA kernel device code in 

this case computes the vector addition of arrays A and B into array C. 

Note that the commands, paths, and procedure shown here are correct at the time of publishing. Some 

changes may be introduced in the final version of the product.

To initialize the environment to use the Intel DPC++ Compatibility Tool, run the following command:

$ source /opt/intel/inteloneapi/setvars.sh

The setvars.sh script not only initializes the environment for the Intel DPC++ Compatibility Tool, but 

all other tools available in the Intel oneAPI Base Toolkit. 

A simplified version of the CUDA Makefile is used, as shown in Listing 5.

LIsting 5. Makefile for porting CUDA code to DPC++

https://software.seek.intel.com/parallel-universe-magazine
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The next step intercepts commands issued as the Makefile executes and stores them in a compilation database 
file in JSON format. The Intel DPC++ Compatibility Tool provides a utility called intercept-build for this 
purpose. Here's a sample invocation:

$ intercept-build make 

The real conversion step is then invoked:

$ dpct -p compile_commands.json --in-root=. --out-root=dpct_output 
vectorAdd.cu

The --in-root and --out-root flags set the location of user program source and location where the 
migrated DPC++ code must be written. This step generates ./dpct_output/vectorAdd.dp.cpp. 

To ensure that vector addition is deployed onto the integrated GPU, explicit specification of the GPU queue 
is made instead of the submission to the default queue. The list of supported platforms is obtained with 
the list of devices for each platform by calling get_platforms() and platform.get_devices(). 
With the target device identified, a queue is constructed for the integrated GPU and the vector add kernel 
is dispatched to this queue. Such a methodology may be used to target multiple independent kernels to 
different target devices connected to the same host/node.

Next, the modified DPC++ code is compiled using:

$ dpcpp -std=c++11 -I=/usr/local/cuda-10.1/samples/common/inc 		
vectorAdd.dp.cpp -lOpenCL

The resulting binary is then invoked, and the vector addition is confirmed to be executing on the integrated 
GPU, shown in Listing 6.

Listing 6. Output from running the ported DPC++ code on the integrated GPU

https://software.seek.intel.com/parallel-universe-magazine
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For details on these tools, use these help flags:

$ intercept-build –h

$ dpct –h

Uncompromised Performance for Diverse Workloads 			 
Across Multiple Architectures
This article introduced oneAPI and the beta Intel oneAPI Toolkits and outlined the components 

that are part of the Intel oneAPI Base Toolkit. The beta release includes toolkits to help users in the 

HPC, AI, analytics, deep learning, IoT, and video analytics domains transition to oneAPI. The DPC++ 

programming guide provides complete details on the various constructs supported for optimized 

accelerator performance. The OpenMP example shown in the article is for a C++ program. However, 

GPU offload will be supported for C and Fortran as well. oneAPI provides the software ecosystem you 

need to port and run your code on multiple accelerators. 
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Andrei Hagiescu, FPGA Software Engineer, and David Cashman, FPGA Software Engineer,	    
Intel Corporation

Field programmable gate arrays (FPGAs) provide a flexible hardware platform that can achieve high 

performance on a large variety of workloads. In this article, we’ll discuss the Intel GZIP example design, 

implemented with oneAPI, and how it can help make FPGAs more accessible. (For more on oneAPI, see 

this issue's feature article, Heterogeneous Programming Using oneAPI.)

The example design implements DEFLATE, a lossless data compression algorithm essential to many 

storage and networking applications. The example is written in SYCL and compiled using the oneAPI 
Data Parallel C++ (DPC++) Compiler, demonstrating a significant acceleration in compression times 

with compelling compression ratio. The GZIP example design takes advantage of the massive spatial 

How oneAPI is Making FPGAs More Accessible than Ever

Accelerating Compression on Intel® FPGAs 
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parallelism available in FPGAs to accelerate the LZ77 compression algorithm by parallelizing memory 

accesses, dictionary searches, and matching. Since the design is implemented using oneAPI, the code 

can target any compute technology, but we specifically optimize for FPGAs. The example produces 

GZIP-compatible compressed data files so that developers can use standard software tools to 

decompress the compressed files produced by this design. 

How FPGAs Work
FPGAs are reconfigurable devices consisting of many low-level compute and storage elements 

(e.g., adders/multipliers, logic operations, memories) structured as a 2D array and connected by 

reconfigurable routing. These elements can form complex compute pipelines and specialized on-chip 

memory systems. In contrast to traditional architectures, which are designed to execute generic code, 

FPGAs can be reconfigured to implement custom architectures that boost the performance of a target 

application. For example, FPGAs can implement specialized compute pipelines that can execute an 

entire loop iteration every clock cycle. FPGAs fit well in an acceleration model, with off-chip attached 

memory (e.g., DDR4) and connectivity to a host CPU (e.g., through PCIe).

DPC++ Compilation to FPGAs
The FPGA backend of the DPC++ Compiler produces a bitstream that reconfigures the FPGA for the 

given code. Each kernel in the SYCL program is implemented using a subset of the FPGA resources. 

All implemented kernels can execute concurrently. 

Within a kernel, each loop body is translated to a deep and specialized pipeline that contains all the 

functional units required to process an entire loop iteration. Conditional statements are refactored as 

predicated execution. Traversing the pipeline once executes an entire loop iteration. 

The compiler identifies instructions that can be executed in parallel, and places them in the same 

pipeline stages, so that they execute in parallel on arbitrarily many functional units. Further, it 

optimizes the pipeline by ensuring that data can be forwarded, so that subsequent loop iterations can 

be issued as soon as possible (often in consecutive cycles), without data hazards (Figure 1).
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1 Pipeline generated from user code

Compiling for the FPGA typically takes several hours. To accelerate the development cycle, the FPGA backend 

is accompanied by an emulator, static performance reports, and a dynamic profiler to guide optimization 

decisions. Emulation and static report generation take minutes instead of hours, vastly improving the 

productivity of FPGA application development compared to traditional RTL development flows.

The oneAPI Advantage
The GZIP design takes full advantage of key oneAPI programming features such as single-source design and 

multiple accelerators, as well as heterogeneous computing where the accelerator runs the hotspot code and 

the CPU is processing the non-hotspot code. Since the design is written using oneAPI, this enables anyone 

who knows C++ to write an algorithm suitable for compilation to FPGAs, focusing mainly on the algorithmic 

details and leaving the hardware translation to the compiler backend. Since the algorithm is expressed in C++, 

it can be easily tested for correct functionality. Hardware performance can be anticipated by examining reports 

before committing to a hardware compilation.

The Example Design
The GZIP design’s architecture follows DEFLATE’s dataflow. We create three kernels to do the work: 

1.	LZ77

2.	Huffman

3.	CRC

Our first kernel computes LZ77 data, searching and eliminating duplicate sequences from the file. The idea is 

illustrated in Figure 2. 
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A duplicated sequence is replaced with a relative reference to the previous occurrence. Less storage is 

required to encode the reference than the original text, reducing the file size. 

To find matches, we need to remember all the sequences we’ve seen and pick the best candidate match. 

The sequence is replaced, and the matching process continues from the end of the current match―or, if 

we didn’t find a good match, at the next symbol. This is harder than it sounds. 

Our goal will be to process 16 bytes on every FPGA clock cycle. So, in one clock cycle, we need to: 

•• Look in our history for the best match at each of 16 starting points

•• Pick the best match (or matches, if there are several that don’t overlap)

•• Write the result to our output

•• Store the string we just read back into the dictionary

It’s not obvious that this work can be done in parallel, since matches can’t overlap. We can’t pick a match starting at 

a given byte until we know that no earlier match already covers it. (We’ll cover this in detail in the next section.)

The second kernel applies Huffman encoding to the data, generating the final compressed result. During 

this step, all symbols and references are replaced with a variable bitwidth encoding which provides codes 

with fewer bits for the most frequent symbols, further reducing the file size. It’s easier to see how this 

step can be parallelized: we can have 16 (or more) independent units of hardware, each determining the 

Huffman code for a given symbol. There’s still a problem, though. Since the output has variable length, we 

need to eventually write each output to the right location in the output stream―which means we need to 

know how large all the previous outputs were. Also, Huffman codes are not byte-aligned, so we’ll need to 

do a lot of bit-level manipulation. Fundamentally, though, this is a less complicated problem than LZ77, 

and we won’t go into more detail here.

Finally, a third kernel computes CRC32 on the input data. This kernel is independent of the other two and can 

operate in parallel. It’s also relatively simple to implement on the FPGA, so we won’t discuss it in detail here.

2 Example of LZ77 compression
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FPGA-Optimized LZ77 Implementation
To capture the sequential nature of the data processing, the LZ77 encoder is described as a single task 

with a single main loop. That is, the code describes a single thread of execution, iterating symbol-by-

symbol on the entire file. A set of dictionaries is created to store previously seen sequences in the datafile. 

These dictionaries are indexed through a hash of the data they store, similar to a hash map. However, 

for performance reasons, a more recent (colliding) entry overwrites dictionary data corresponding to an 

earlier entry with the same hash key. The dictionaries are updated by writing the newly seen input to all 

the dictionaries. To reduce the impact of collisions in the dictionaries, we separate the previously seen 

sequences in multiple disjoint sets.

Why do we need more than one dictionary? Recall that we want to process 16 bytes per cycle. This means 

storing 16 strings (one starting at each byte) to the dictionary and doing 16 hash lookups on every clock 

cycle. Each FPGA memory block only has two ports. To allow all these concurrent accesses, we create 16 

separate memory systems, each storing strings at a different position. We now have our history spread 

across 16 dictionaries, so each of our 16 hash lookups now needs to be done in 16 different dictionaries―

for a total of 256 lookups. It seems like we’ve just made the problem worse. 

We can solve this by building 16 copies of each of our dictionaries, for a total of 256 dictionaries. All of 

these dictionaries use a large fraction of the FPGA’s on-chip memory, but we've achieved our goal of doing 

16 hash lookups and writes on every clock cycle. Figure 3 shows an example of the dictionary structure 

we would need if we only wanted to process four bytes per clock cycle. (Incidentally, the FPGA area 

devoted to dictionaries is the main limitation preventing us from processing more than 16 bytes per cycle.)

3 Dictionary replication for four-byte parallel access
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Expressing the parallel behavior may sound tricky. But, in fact, the compiler identifies the data parallelism 

between the lookups on its own. That is, the code will result in specialized FPGA logic capable of 

executing all the dictionary lookups concurrently. In the code, VEC is the number of bytes being 

processed per cycle, and LEN is the size of the string. In the example design, both are set to 16. We’ve 

used template metaprogramming (the unroller) to replicate the code in the inner function for all i and 

j. The data from all the lookups is aggregated in a reduction-like operation as part of the same pipeline.

Our dictionaries solve one problem, but we have a lot more processing to do if we want to complete a 

full loop iteration on each clock cycle. Luckily, we don’t need to. The FPGA compiler will automatically 

pipeline the datapath. So after iteration 0 of the loop finishes reading from the dictionary, iteration 1 can 

start, while iteration 0 starts on picking the best match. The match selection can be staged across several 

cycles, with a different iteration of the loop operating at each stage. 

When generating the output, one final challenge is how to correctly account for the impact of a match 

on subsequent matches. Once a match is identified, overlapping matches must be disregarded. In our 

single_task code representation, this manifests as a loop-carried variable that needs to be computed 

before subsequent iterations of the loop can proceed. If the computation is too complex, it may limit the 

clock speed of the FPGA, or limit our ability to complete a loop iteration on every clock cycle.

Because we target an FPGA, we can customize the hardware to optimize the handling of this dependency. 

We simplify the data hazard by minimizing the amount of computation that depends on it. For example, 

we choose to do the hash lookups speculatively, determining all the possible matches, even if the 

lookups are related to overlapped matches. We simply prune the overlapping matches later on. The FPGA 

backend optimizes the required forwarding logic, fully avoiding the data hazard. Figure 4 demonstrates 

the pruning of speculative matches.
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4 Pruning speculative matches, accounting for matches identified in previous loop 
iterations, overlapped matches in the current loop iteration, and poor quality 
matches

Task-Level Parallelism
To compress a file, the three processing kernels are asynchronously submitted by the host CPU. They 

can run concurrently in the FPGA hardware. They operate at slightly different rates, with CRC being 

faster. LZ77 produces data needed by the Huffman kernel. To avoid an additional delay, and to avoid 

transferring data through off-chip memory, we use kernel-to-kernel communication pipes, a proposed 

Intel extension of the SYCL language. This extension allows different kernels to exchange data, in 

sequence, without writing to off-chip memory, as shown in Figure 5.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en


Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

26The Parallel Universe

5 Task parallelism in GZIP

Building the GZIP Design
You can download and run the GZIP design from the oneAPI code samples. You may target the 

FPGA emulation to verify correctness and functional behavior. Attempting to compress, for example, 

/bin/emacs-24.3 will result in:

The next step is to generate static optimization reports for the design. When optimizing, you should 

inspect these reports to understand the structure of the specialized pipelines being created for your 

kernels. You can find the reports at gzip_report.prj/reports/report.html.make reports.

Finally, you can compile and run the design on FPGA hardware. The optimized compilation will take a 

few hours. 
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Performance
Here’s how we invoke GZIP:

To evaluate performance, the application will call the compression function repeatedly and report on the 

overall execution time and throughput. Here’s some sample output:

Making FPGAs More Accessible
With oneAPI, FPGAs are more accessible than ever. Spatial architectures open great acceleration 

opportunities, often in domains that are not embarrassingly parallel. And it’s all at your fingertips with the 

DPC++ compiler and oneAPI.

oneAPI: The Path to Streamlined Cross-Architecture Development

As compute technology evolves at an increasingly accelerated pace, so, too, does the 
world’s reliance on compute hardware that is diverse enough to handle expansive data-
centric workloads. According to Bill Savage, vice president and general manager of Compute 
Performance and Developer Products at Intel, it’s the precise focus of oneAPI, an initiative that 
simplifies the programming of diverse architectures—CPUs, GPUs, FPGAs, AI accelerators—to 
meet customer workload needs.
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Oleg Fedyaev, Graphics Software Engineer, Intel Corporation

Computer graphics is an amazing, essential part of our everyday lives―while we work on computers, 

watch movies, use smartphones, and even drive cars. The performance of graphics processors has 

dramatically increased over the last 10 years. And the influence of the video gaming industry on 

this process is hard to underestimate. At the same time, the continuous growth of GPU capabilities 

is opening new opportunities for game developers, encouraging them to invent breakthrough 

rendering techniques and effects to gain every possible hardware advantage. But this race between 

GPU hardware developers and game developers creates a drawback. Often, innovative rendering 

techniques bump into hardware limits.

It’s Easy to Find Out with a GPU and Device Context Queue Analysis

Is Your Game GPU-Bound? 
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In this article, we’ll walk through a quick and easy way to see whether your game is CPU-bound using 

a high-level system overview.

Game Performance Fundamentals
Video game production is expensive. And investing in performance optimization is an important 

factor contributing to a game project’s profitability. Normally, different game genres―action, 

adventure, strategy, and others―have different performance requirements. If a game seems visually 

slow, with notable lags or delays in drawing artifacts, it definitely has performance issues that must 

be addressed.

A formal metric to measure game performance is frame rate, the number of frames rendered per 

second (FPS). FPS is used for benchmarking and ranking different applications: the higher the FPS, 

the better. In most cases, this approach is feasible. For example, an action game with a lot of motion 

doesn’t look good if FPS is low.

A modern game is a complex product consisting of multiple components: 

•• Rendering graphics

•• Calculating physics

•• Playing sounds

•• Executing scripts

•• Hosting network

•• And more

Each component, separately or in combination, can affect game performance. That’s why it can be 

tricky to identify whether an application is GPU- or CPU-bound. 

Though it’s only one aspect of a game, it’s reasonable to start analysis from rendering, since graphics 

can be crucial to creating the game’s unique style, spirit, and atmosphere. 

Classic Rendering Pipeline
There’s no way to define precisely whether the GPU is a performance bottleneck without 

understanding the graphics rendering pipeline, the graphics programming model, and the role of a 

graphics driver in this procedure. A thorough analysis of GPU activity through the whole stack―from 

the application code to the hardware―requires significant expertise. Fortunately, it’s enough to 

perform a basic performance analysis to see overall GPU utilization without going into great detail.
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1 Rendering pipeline

A rendering pipeline operates with resources and states. Resources bound to the pipeline specify what 

should be rendered and where. They can consist of geometries, textures, and render targets written in a 

proper format. Rasterization parameters, testing depth conditions, blending attributes, and other states 

specify how those resources should be interpreted and processed to generate an image on a screen. 

Render resources and states are tightly connected with GPU programs, also called shaders, which are 

executed in different stages of the rendering pipeline (Figure 1).

The pipeline’s classic rendering process takes source data and sequentially modifies it, passing it through the 

same stages until it reaches the destination. Any rendered object is first transformed in a virtual space, and 

then projected onto a screen surface. After that, a visible part of that projection is colorized and merged with 

other rendered objects in a framebuffer.

The graphics programming model is simple. Draw context is configured, opened, and used for submitting 

rendering commands in the correct order: required resources, states, and programs should be bound to the 

pipeline before invoking any draw command that orders the pipeline to do a job. This procedure is repeated 

as many times as needed for objects to be rendered, until a final scene forms in a framebuffer. We can push 

this to a screen with a buffer swap command. Regardless of whether an application uses OpenGL*, DirectX*, 

Vulkan* or any other graphics API, this concept stays the same.
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It’s now obvious how many complicated operations constitute a single draw. And each operation 

contributes to the draw duration. Individual draw durations vary, affecting the total frame rendering time. 

A long frame time may indicate a GPU-bound scenario, which we can confirm or reject after estimating the 

GPU load based on graphics driver performance markers.

Graphics Driver Activity
A common graphics program works with a graphics driver, but never directly with the GPU. Any time we 

open a draw context in our application, we implicitly create a corresponding interface to a graphics driver, 

known as a driver device context. To make rendering possible, the driver must perform a lot of work: 

•• Release and allocate memory blocks on the GPU

•• Upload the resources necessary for rendering from the CPU to the GPU

•• Set registers of the GPU execution units

•• Upload GPU programs

•• Transfer results back to the CPU 

•• And more

Any time we invoke a sequence of graphics API calls within the application code, the driver translates them into 

a sequence of commands eligible for the GPU. Commands are not executed on the GPU immediately. Instead, 

they accumulate in a command buffer. The driver constantly batches a series of commands into packets, and 

then pushes these packets into a device context queue, scheduling them for execution (Figure 2). 

2 Command buffer
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A device context queue can contain different types of packets with different types of commands. The 

prevailing command type in a packet defines the packet’s type. Each packet stays in the queue, waiting 

until the last command written in the previous packet has been executed on the GPU. (For example, see 

the selected render packet in Figure 2.)

Exploring the device context queue can give us some useful performance insights. For example, a huge 

queue size usually corresponds to a huge amount of graphics work submitted to the GPU. Long packet 

execution time may be due to computationally-intensive draw procedures. Long packet waits can be 

caused by inefficient rendering algorithms or synchronization.

When we’ve identified all the packets relating to a single frame, we can roughly estimate the frame 

duration, which we can calculate as a time range by submitting the first command packet in a queue until 

executing the last command from the last submitted packet within that frame.

However, even if a frame time is long, we can’t define whether our application is GPU-bound until we 

explore a corresponding GPU hardware queue associated with a graphics processor performing rendering. 

The GPU is a shared resource that can serve multiple applications, rendering graphics simultaneously. 

Long rendering time may be a result of concurrent execution with another application that acquired the 

GPU context at the same time.

The hardware GPU queue (Figure 3) provides a clear picture of the overall GPU utilization. We can use this 

queue to identify how busy the GPU is, and which application is rendered at the time.

3 Hardware GPU queue

The GPU queue snapshot in Figure 3 shows at least two simultaneously rendered applications, differentiated 

by the colors of the command packets. Neither application is GPU-bound. The frame time of the application, 

highlighted in blue, is not much longer than 11 milliseconds, which corresponds to approximately 80 FPS. 

And 80 FPS is usually high enough. The green one seems to be a background process with very tiny frames 

(about 5 milliseconds each). Moreover, the GPU isn’t even as busy as it could be, since we can see multiple 

gaps between executing command packets, corresponding to periods when the GPU is idle.
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The concept of analyzing software and hardware queues is quite promising from a reliability perspective. 

Plus, these queues are easy to build, since we know how to acquire the required performance data.

System Event Tracing
Regardless of whether we work on Windows*, Linux*, macOS*, or any other operating system, we can 

connect to a system event trace layer, which logs different types of events associated with key execution 

points within different system modules. Some events are eligible for performance analysis. The graphics 

driver is no exception. Any time the driver pushes a command packet into a device context queue, uploads 

a command packet to the GPU, or executes the last command written in a command packet, it submits 

corresponding events into a system tracing layer so that we can easily acquire them. For example, if we 

want to build a device context and GPU command packet queues on Windows, we need to capture several 

events from the Microsoft-Windows-DxgKrnl provider of the Event Tracing for Windows* (ETW*) system.

Different attributes encoded into events data enable binding different events together to distinguish the 

current status of each packet in a queue at any time.

Graphics Application Analysis
System event tracing is well documented and can be used on any platform. There are many tools that can 

capture or visualize system tracing data. However, the number of tools capable of proper simultaneous 

analysis of device context and GPU hardware queues is limited. Intel® GPA Graphics Trace Analyzer is 

one of these tools, designed to analyze the performance of graphics applications with different levels of 

detail, from a high-level system analysis to a single frame per-draw analysis. 

Now let’s apply what we’ve learned to a real-life, graphics-intensive game. We can try it on a workstation 

with a graphics processor in the middle performance range to make our experiment predictable. We’ll use 

the just-released Borderlands 3*, a well-known game from the first-person shooter genre. We’ll run it on 

the Intel® NUC Mini PC NUC8i7HVK, which has two graphics processors: integrated Intel® HD Graphics 

630 and discrete AMD Radeon RX Vega M GL*. If we run this game at 2560x1440 resolution adapted for 

widescreen monitors and switch all graphics options in the game to a high profile, the game engine selects 

for rendering the most capable graphics processor, which seems to be Radeon Vega on this device. 

The first thing that catches our eye after five minutes of play is a lag between changing the state of an 

input device, such as a mouse or a gamepad, and changing a scene on a screen. Animation of some 

moving objects also looks a bit ragged. If we capture and open a trace with Intel GPA Graphics Trace 

Analyzer, we can observe all attributes of the GPU-bound scenario from the first sight at timeline tracks 

with a device context queue and GPU hardware queue (Figure 4).
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4 Device context queue and GPU hardware queue

The GPU queue has no gaps. It’s fully busy, continuously executing commands submitted from the game. The 

device context queue size is large enough, which means a lot of graphics work is prepared and waiting for 

rendering. We can also measure frame duration, selecting all command packets executed on the GPU within 

a single frame. The frame duration of about 48.8 milliseconds corresponds to approximately 21 FPS, which is 

definitely insufficient for this action game. Games like this one usually require 60+ FPS to achieve maximum 

game experience. 

Analyzing GPU-bound scenarios using a high-level system overview, and exploring software and hardware 

queue breakdowns, gives us several benefits. This analysis is quick and accurate. It doesn’t require graphics 

expertise or depend on the type of graphics API used for rendering. It also works on any platform where we 

can capture corresponding performance events from system tracing.

Learn More
•• Intel® Graphics Performance Analyzers
•• Intel® Graphics Trace Analyzers 
•• Intel® Graphics Performance Analyzers Cookbook 
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Jameson Nash and Jeff Bezanson, Julia Computing, Inc., and Kiran Pamnany, Caltech

Taking advantage of multicore processors is a crucial capability for any modern programming language. 

Programmers need the best possible throughput for their applications, so we’re going to show how the new 

multithreading runtime in Julia* v1.3 unleashes the full power of a modern CPU with minimal hassle.

One of our key considerations is reducing the programmer's burden. Julia provides a range of modern 

primitives designed to compose effectively. We’ll discuss some of the tradeoffs we make to try to simplify 

the mental model for the programmer. One important design principle of Julia is to make common tasks 

easy and difficult tasks possible. This is demonstrated in multiple aspects of the language, e.g.:

Unleashing the Full Power of Modern CPUs

New Threading Capabilities in Julia* v1.3
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•• Automatic memory management

•• Combining functions, objects, and templates into a single dispatch mechanism

•• Optional type inference for performance

We now extend this to parallelism. By building on the language's existing concurrency mechanism, we’ve 

added parallel capabilities that preserve the (relative) simplicity of single-threaded execution for existing 

code, while allowing new code to benefit from multithreaded execution. This work has been inspired by 

parallel programming systems such as Threading Building Blocks.

In this paradigm, any piece of a program can be marked for parallel execution, and a task will be started to 

automatically run that piece of code on an available thread. A dynamic scheduler decides when and where 

to launch tasks. This model of parallelism has many helpful properties. We see it as somewhat analogous 

to garbage collection. With garbage collection, you freely allocate objects without worrying about when 

and how they’re freed. With task parallelism, you freely spawn tasks―potentially millions of them―

without worrying about when and where they eventually run.

The model is portable and free from low-level details. The programmer doesn’t need to manage threads, 

or even know how many processors or threads are available. The model is nestable and composable. 

Parallel tasks can be started that call library functions that themselves start parallel tasks—and everything 

works correctly. This property is crucial for a high-level language where a lot of work is done by library 

functions. The programmer can write serial or parallel code without worrying about how the underlying 

libraries are implemented. This model isn't limited to Julia libraries, either. We've shown that it can be 

extended to native libraries such as FFTW*, and we are working on extending it to OpenBLAS*.

Running Julia with Threads
Let’s look at some examples using Julia v1.3 launched with multiple threads. To follow along on your 

own machine, you’ll need to download the latest Julia release (currently v1.3.0) from https://julialang.
org/downloads. Run ./julia with the environment variable JULIA_NUM_THREADS set to the number 

of threads to use. Alternatively, after installing Julia, follow the steps at http://docs.junolab.org/latest/
man/installation/ to install the Juno IDE*. It will automatically set the number of threads based on 

available processor cores. It also provides a graphical interface for changing the number of threads. 

We can verify that threading is working by querying the number of threads and the ID of the current thread:
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Tasks and Threads
A visual way to demonstrate that threads are working is to watch the scheduler picking up work in semi-

random, interleaving orders. Previous versions of Julia already had a ‘@threads for’ macro which would 

split a range and run a portion on each thread with a static schedule. So in the range below, thread 1 would run 

items 1 and 2; thread 2 would run items 3 and 4; and so on.

Shortcut to  Efficient Parallel Programming
Threading Building Blocks Free

Download
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It's now possible to run the same program with a completely dynamic schedule. We use the new               

‘@spawn’ macro with the existing ‘@sync’ macro to delineate the work items.

Now, let’s look at some more practical examples.

Parallel Merge Sort
The classic merge sort algorithm shows a nice performance benefit from using multiple threads. This 

function will create O(n) subtasks, which will sort independent portions of the array before merging them 

into a final sorted copy of the input. We use here the ability of each task to return a value via fetch.
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Figure 1 shows how adding more threads affects scaling. Since we’re using in-process threads, we could 

further optimize by mutating the input in place and reusing the work buffers for additional performance.
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1 Scaling ratios of psort on a server with 40 hyperthreads (two Intel® Xeon® Silver 
4114 processors @ 2.20GHz)

While not demonstrated here, fetch would also automatically propagate exceptions from the child task.

Parallel Prefix
Prefix sum (also known as “scan sum”) is another classic problem that can benefit nicely from multiple 

threads. The parallel version of the algorithm computes partial sums by arranging the work into two trees. 

The short implementation below can take advantage of all cores and SIMD units available on the machine:
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Figure 2 shows how adding more threads affects scaling.

Several features of Julia combine to make it particularly easy to express this simple yet performant 

implementation. Under the hood, the system automatically compiles versions of the function optimized for 

different types of arguments. The compiler can also automatically specialize the function for a specific CPU 

model, both ahead-of-time and just-in-time. Julia ships with a “system image” of code precompiled for a 

reasonable range of CPUs, but if the processor used at runtime supports a larger feature set, the compiler 

will automatically generate better-tailored code. Meanwhile, the threading system adapts to the available 

cores by dynamically scheduling work.
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2 Scaling ratios of prefix_threads on a server with 40 hyperthreads (two Intel® Xeon® 
Silver 4114 processors @ 2.20GHz)
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Parallel-Aware APIs
Several operations in application code must be made thread-aware to be used safely in parallel. These 

user-facing APIs include:

•• Concurrency basics: Task, and associated functions including schedule, yield, and wait

•• Mutexes: ReentrantLock and Condition variables, including lock, unlock, and wait

•• Synchronization primitives: Channel, Event, AsyncEvent, and Semaphore

•• I/O and other blocking operations: Including read, write, open, close, and sleep

•• Experimental Threads module: Various building blocks and atomic operations

Scheduler Design
A prototype implementation of the partr scheduler was first written for us in C by Kiran Pamnany 

while at Intel in late 20161,  following research on cache-efficient scheduling2. The goal of this work 

was composition of threaded libraries with a globally depth-first work ordering. partr implements 

this using an approximate priority queue, where the priorities are set equal to the thread ID of the 

thread launching a task.

Foreign Libraries
An important motivation for this work was our desire to better support multithreaded libraries without 

CPU oversubscription killing performance due to cache-thrashing and frequent context switching. 

Previously, the only options were for the user to decide up-front to limit Julia to N threads, and to 

tell the threaded library (such as libfftw or libblas) to use M ÷ N cores. The most common choices are 

probably 1 and M, so only part of the application can benefit from multiple cores. However, given our 

ability to quickly create and run work items in our thread pool, we're looking at how to let external 

libraries integrate with our thread pool. This is an ongoing area of exploration as we get feedback on 

the performance and API needs of various libraries.

We've successfully adapted FFTW to run on top of our threading runtime instead of its own (a 

Pthreads-based workpool). This took us only a few hours. (We were fortunate to be able to enlist the 

help of that library's author.) Without any performance tuning (yet), it got competitive performance 

results. We learned important lessons to tightly optimize our scheduler latency, which is now ongoing 

work to achieve exact performance parity. Even with some overhead imposed by generality, however, 

we expect that the ability to compose thread-aware users and achieve resource sharing from the partr 

scheduler will make this an overall improvement in program operation.
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Looking to the Future
Julia's approach to multithreading combines many previously known ideas in a novel framework. While 

each in isolation is useful, we believe that―as is so often the case―the sum is greater than the parts. From 

this point, we hope to see a rich set of composable parallel libraries develop within the Julia ecosystem.

References
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Blelloch, Babak Falsafi, Limor Fix, Nikos Hardavellas, Todd C. Mowry, and Chris Wilkerson. Scheduling 
Threads for Constructive Cache Sharing on cmps. In Proceedings of the Nineteenth Annual ACM 
Symposium on Parallel Algorithms and Architectures, SPAA ’07, pages 105–115, New York, NY, USA, 
2007. ACM.

Breaking Boundaries with Data Parallel C++

Data Parallel C++ (DPC++) allows developers to reuse code across diverse hardware 
targets—CPUs and accelerators—and perform custom tuning for a specific accelerator. 
Based on familiar C++ and SYCL*, DPC++ is an open alternative to single-architecture 
proprietary approaches and helps developers create solutions that better meet specialized 
workload requirements. Watch Intel vice president Alice Chan discuss this shift in 
programming flexibility.
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Kirill Shvets, Machine Learning Engineer, and Egor Smirnov, Software Engineering Manager, 
Intel Corporation

Gradient Boosted Trees* (GBT*)1 is an accurate and efficient machine learning (ML) algorithm for 

classification and regression tasks. There are many GBT implementations, but perhaps the most 

popular is the XGBoost*2 library. Our previous article, "Accelerating XGBoost for Intel® Xeon® 

Processors" (The Parallel Universe, issue 38),3 reported a significant improvement in CPU-based 

training for XGBoost. The performance for the Intel® Data Analytics Acceleration Library (Intel® 
DAAL)4  was shown to be even better. ML inference is just as important as training because end users 

need model predictions as quickly as possible. That’s the focus of this article.

How to Boost Prediction Quality and Performance Using GBT in 		
Intel® Data Analytics Acceleration Library

Fast Gradient Boosting Tree Inference 
for Intel® Xeon® Processors
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Performance Comparison
In this article, we’ll compare inference performance for the following GBT implementations:

•• Forest Inference Library (FIL)5, an open-source library in RAPIDS cuML*6 that provides GPU-accelerated 
inference for boosted decision tree models

•• XGBoost CPU/GPU inference (master branch)

•• Intel DAAL (version 2019, Update 5), a highly-optimized open-source library for Intel® platforms

Real-world datasets were used for performance analysis: Bosch*, Epsilon*, and Mortgage* (Q1’2000 subset). 

We shuffled each dataset and randomly selected the following subsets for the prediction stage: 

•• Bosch7 (968 features, 100K total number of observations, ~1.1M for prediction)

•• Epsilon8 (2,000 features, 400K total number of observations, 100K for prediction)

•• Mortgage9 Q1’2000 (45 features, ~9M total observations, 1M for prediction)

We chose model sizes sufficient to achieve best accuracy on the selected datasets (Appendix A). For 

performance measurements, we used AWS EC2* instances: 

•• CPU: c5.metal (2nd generation Intel® Xeon® Scalable processors, 2 sockets, 24 cores per socket)

•• GPU: p3.2xlarge (NVIDIA* Tesla* V100)

For details, see the Configuration section below.

It’s common in ML to apply the inference model to one data observation at a time (i.e., the batch size is set to 

1). GBT inference can also be applied this way, but to be comprehensive, we’ll consider varying batch sizes.

Figure 1, Figure 2, and Figure 3 show:

•• The CPU implementation of XGBoost (yellow line) is competitive with the GPU implementation (dark green 
line), and even outperforms it on smaller batches.

•• FIL (green line) is faster than stock XGBoost CPU/GPU in most cases (medium and large batch sizes), while 
Intel DAAL performs even better.

•• The Intel DAAL implementation (blue line) significantly outperforms FIL (green line) on a one-row case.

•• The Intel DAAL implementation (blue line) has better performance for medium and larger batch sizes.

For XGBoost GPU and CPU performance measurements, input data was provided in the native format, 

XGBoost DMatrix*. For prediction with GBT in Intel DAAL, we passed NumPy* contiguous arrays. 

For internal implementation reasons, the cuDF* data format isn’t performance-oriented for FIL. This 

meant that we had to provide NumPy contiguous arrays as an input, since it’s a more efficient―and 

faster―way to load data on a device than an external load (e.g., the CuPy* library that we also used). 

However, in real end-to-end ML workloads on the GPU, it’s more common to do ETL with cuDF and input 

a cuDF DataFrame without data conversion (i.e., without any additional overhead). Figure 4 shows that 

the cuDF format for FIL inference is dramatically slower than FIL with the NumPy data format, especially 

compared to Intel DAAL. We get expected performance in end-to-end machine learning applications.
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1 GBT inference performance for the Epsilon dataset (lower values of μsec are better)

2 GBT inference performance for the Bosch dataset (lower values of μsec are better)
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3 GBT inference performance for the Mortgage dataset (lower values of μsec are better)

4 GBT inference on FIL cuDF, Intel DAAL throughput, Bosch (lower values of μsec are better)
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We can draw the following conclusions from our performance measurements:

•• Inference on Intel DAAL is significantly faster than other implementations when the batch size is equal to 
1, which is one of the most important use-cases.

•• Inference on Intel DAAL is faster even for bigger batches and for reasonably-sized models.

•• XGBoost CPU and GPU inference is approximately the same for all datasets.

•• The cuDF format (commonly used in end-to-end applications) for FIL inference is dramatically slower than 
Intel DAAL inference. 

Cost Analysis
We selected the most efficient CPU and GPU implementations to determine prediction cost: Intel DAAL and 

cuML FIL. The following AWS EC2 instances were used in our experiments (cost as of December 2019):10

•• CPU: c5.metal, $4.08 per hour

•• GPU: p3.2xlarge, $3.06 per hour

Table 1 shows an example of prediction cost computation for the Epsilon* dataset (100K observations).  

Figure 5 shows a prediction cost comparison for Intel DAAL versus FIL.

5 Prediction cost comparison for Intel DAAL versus FIL

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en


Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

54The Parallel Universe

The same cost calculations for other datasets show:

•• Bosch dataset: 4.4x improvement with Intel DAAL versus cuML for prediction cost

•• Mortgage data set: Intel DAAL is on par with cuML

Compared to the GPU implementations, GBT inference with Intel DAAL on the CPU is faster and less 

expensive.

Functionality Analysis
We compared available functionality in XGBoost, Intel DAAL, and FIL and summarized it in Table 2.

Table 2. Functionality in XGBoost, Intel DAAL, and FIL

Due to limitations in FIL, all performance comparisons were provided in single-precision floating-point 

format and using binary classification and regressions datasets.

What Makes Intel DAAL Faster?
To maximize the utilization of modern Intel® Xeon® processors, Intel DAAL applies the Intel® Advanced 
Vector Extensions 512 (Intel® AVX-512) vector instruction set for fast GBT inference (Figure 6). The 

main operations in GBT inference are:

•• Data comparison for evaluating conditions in each split-node

•• Random memory accesses (read) to tree nodes and single features from predicted observations
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6 GBT inference

To process an observation via one tree, we used this idea until reaching a leaf-node: on the current node 

of the tree, we compared a certain feature value from the observation ‘F[node.featureIndex]’ with the 

split value 'node.value' from the node. The index of the next node is defined as:

The main inference operations, comparison, and random memory accesses can be efficiently 

implemented with the vpgatherd{d,q} and vcmpp{s,d} Intel AVX-512 vector instructions. To apply 

these instructions, search the tree for a few observations (a block of rows) at the same time for each tree: 

•• Gather information, splitting values ‘value’ and feature indices ‘featureIndex’ from certain tree nodes for 
each observation in the block of rows.

•• Apply vector comparisons between ‘value’ and F[featureIndex] for the observations.

•• Compute indices for the next nodes for each observation based on the comparison.

We do this for each observation until we achieve the leaf nodes in the tree.

The performance of the algorithm depends on the efficiency of memory accesses and memory 

bandwidth. Intel DAAL uses smart data blocking for tree structures to improve temporal cache locality, a 

subset of trees, and a block of observations that fits in the L1-data cache size. After this, we implement 

the required prediction for the observations with the subset of trees. As a result, most data accesses 

lead to L1 data cache hits with the highest memory bandwidth (Figure 7). 
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7 Memory bandwidth

Faster Performance
Summarizing the results of our performance comparisons, we can conclude that we can achieve the 

same prediction quality much faster performance using GBT in Intel DAAL on a CPU compared to other 

implementations. The inference with Intel DAAL is significantly faster for online inferencing (i.e., when 

the batch size equals 1). This is an important use case in applied ML, since it’s important to minimize the 

time required for handling the user-supplied data and predicting the outcome (e.g., object detection in 

autonomous driving), and there’s no possibility of accumulating a bigger batch of data.

For general cases when data was accumulated in bigger batches, Intel DAAL on the CPU also 

outperforms both the FIL GPU and XGBoost. For maximum available batch size, we have a relative 

speedup for Intel DAAL versus FIL: 4x for Epsilon, 5.9x for Bosch, and 1.4x for Mortgage.

Besides fast performance, Intel DAAL provides a user-friendly Python* interface, with code for inference 

that’s simple and short.

In computational cost calculations, we saw that for the same payload, the cost for CPU-based 

inferencing with Intel DAAL is, on average, 2.85x times cheaper than for FIL.10
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Code Examples

For XGBoost:

For Intel DAAL:

For FIL:
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Configuration

Algorithm Parameters
While the number of trees and maximum tree depth parameters varied for each dataset, all other 

parameters were fixed (Table 3). Performance data were collected in November 2019.

Table 3. Parameters for XGBoost and Intel DAAL tests

For FIL inference, we used a pre-trained XGBoost model.

Due to FIL limitations, performance was measured only for single-precision floating-point format 

(float32), since FIL doesn’t support double format currently. 
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Hardware Configuration
•• CPU configuration: c5.metal AWS EC2 instance (2nd generation Intel® Xeon® Scalable processors): 2 

sockets, 24 cores per socket, HT:on, Turbo:on OS: Ubuntu 18.04.2 LTS, total memory of 193 GB (12 
slots/16GB/2933 MHz).

•• GPU configuration: p3.2xlarge AWS EC2 instance: Intel® Xeon® E5-2686 v4 processor @ 2.30GHz, 1 
socket, 4 cores, HT:on, Turbo:on; GPU: Tesla* V100-SXM2-16G (driver version: 410.104, CUDA* version: 
10.0), OS: Ubuntu* 18.04.2 LTS, total memory: 61 GB (4 / 13312 MB).

Software Configuration
•• RAPIDS FIL (Forest Inference Library) – version 0.9

•• Intel® DAAL - version 2019 Update 5

•• XGBoost – master (ef9af33a000f09dbc5c6b09aee133e38a6d2e1ff)

Other software: Python 3.6, Numpy 1.16.4, Pandas 0.25, Scikit-lean 0.21.2.

Appendix
Accuracy on a tested subset generally correlates with two major model parameters: the number and 

depth of tree estimators. Thus, we chose model sizes that are sufficient to get a better accuracy on 

classification datasets (Table 4 and Table 5).

Table 4. Epsilon (100K rows)

Table 5. Bosch (100K rows)
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Inference accuracy on a selected model (Epsilon “1000-4”) is approximately the same with Intel DAAL 

for FIL and XGBoost CPU/GPU: 0.874400. On another selected model (Bosch “100-12”) accuracy is also 

approximately the same with Intel DAAL for FIL and XGBoost CPU/GPU: 0.99444.

For regression inference on the Mortgage dataset, we used the parameters published by NVIDIA for 

their RAPIDS benchmarks (the trained model has 100 tree estimators with maximum depth equal to 8).

What is the Intel® DevCloud?

The Intel® DevCloud is a cluster composed of CPUs, GPUs, and FPGAs, and it is preinstalled 
with several oneAPI toolkits. This video presents a simple step-by-step guide on how to set 
up and run a sample oneAPI application on the DevCloud batch system.
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Alexander Andreev, Machine Learning Engineer, and Egor Smirnov, Software Engineering Manager, 
Intel Corporation

The amount of data humans produce every day is growing exponentially―and so is the need for high-

performance, scalable algorithms to process and extract benefit from all this data. Intel puts a lot of effort 

into building effective data analytics tools for our platforms by optimizing not only hardware, but also 

software. In recent years, Intel has built a powerful data analytics and machine learning (ML) software and 

hardware stack that includes both optimized frameworks1 and libraries.2 

From the hardware side, high performance and scalability are provided by Intel® Xeon® Scalable processors3 (the 

2nd generation also contains Intel® Deep Learning Boost [Intel® DL Boost] technology], Intel® Nervana™ Neural 
Network Processors [Intel® Nervana™ NNP], Intel® FPGAs, and Intel® Movidius Neural Compute Stick4).

Intel’s Hardware and Software Stack for Big Data

k-means Acceleration with 2nd Generation 
Intel® Xeon® Scalable Processors
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Intel-Optimized scikit-learn* and Intel® Data Analytics Acceleration 
Library (Intel® DAAL)
One of Intel’s optimized frameworks for classic ML algorithms, scikit-learn*5, is part of the Intel® Distribution 
for Python* (IDP).6 The IDP scikit-learn uses the Intel® DAAL7 library underneath to obtain high performance 

on Intel® architectures. Intel DAAL is an open-source8 data analytics library optimized for Intel® architectures 

ranging from mobile (Intel® Atom® processors) to data centers (Intel® Xeon® processors). Intel DAAL provides 

C++, Java*, and Python APIs, as well as newly introduced Data Parallel C++ (DPC++), which is part of oneAPI,9 

a unified programming model for effective development on different architectures (CPU, GPU, and others). 

K-means is one of the accelerated ML algorithms in IDP scikit-learn.

The K-means Algorithm 
K-means, a popular clustering algorithm, is used in astronomy, medicine, market segmentation, and many 

other areas. It’s one of the accelerated ML algorithms implemented in Intel DAAL. k-means is both simple 

and powerful. Its objective is to split a set of N observations into K clusters. This is achieved by minimizing 

inertia (i.e., the sum of squared Euclidian distances from observations to the cluster centers [centroids]). The 

algorithm is iterative, with two steps in each iteration:

1.	 For each observation, compute the distance from it to each centroid, and then reassign each 

observation to the cluster with the nearest centroid. 

2.	 For each cluster, compute the centroid as the mean of observations assigned to this cluster.

Repeat these steps until one of the following happens: 

1.	 The number of iterations exceeds its predefined maximum.

2.	 The algorithm converges (i.e., the difference between two consecutive inertias is less than a predefined 

threshold).

Different initialization methods are used to get initial centroids for the first iteration. It can select random 

observations as initial centroids, or use more complex methods such as k-means++.10
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Intel DAAL versus RAPIDS cuML* on Distributed k-means
To show how well Intel DAAL accelerates k-means, we compared it to RAPIDS cuML, which claims to be 

90x faster than CPU-based implementations.11 We also compared cuML to scikit-learn from IDP, which 

uses Intel DAAL underneath.

From Amazon Web Services Elastic Compute Cloud*12 (AWS EC2*), we used the following instances 

(nodes) to measure performance:
•• Multiple (up to 8) AWS EC2 c5.24xlarge instances with 2nd Generation Intel Xeon Scalable processors

•• One AWS EC2 p3dn.24xlarge instance with eight Nvidia V100* GPUs

We chose the maximum number of c5.24xlarge instances to be eight because the cost per hour of 

eight c5.24xlarge instances is approximately the same as one p3dn.24xlarge instance. 

We used a synthetic dataset with 200 million observations, 50 columns, and 10 clusters, which is as 

much as the V100’s memory can store. A similar dataset with 300 million observations instead of 200 

caused a RAPIDS memory error (RMM_ERROR_OUT_OF_MEMORY). CPU-based systems can typically 

process much larger datasets. (The code for dataset generation is shown in the Code Examples section 

at the end of this article.)

We chose the same initialization method in all measured cases for an apples-to-apples comparison, 

and we chose the float32 datatype since it gives sufficient accuracy and fits in memory.

Figure 1 and Table 1 show that starting from four Intel Xeon Scalable processor nodes, Intel DAAL 

outperforms cuML on eight V100 GPUs. Even one node with two Intel Xeon Scalable processors is 

only 40% slower than eight V100 GPUs. Also, it can hold and process the whole dataset, while fewer 

than eight V100s can’t. IDP scikit-learn and Intel DAAL on one CPU node show approximately the same 

results: the difference in training time is trivial, and due to Intel DAAL function call overhead.

1 Speedup of k-means training with Intel DAAL
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1.	Table 1. K-means training time (in seconds) and speedup: comparison of IDP scikit-learn, Intel® 
DAAL, and RAPIDS cuML

The k-means algorithm converges to the same result for all measured cases. Inertia is 4×108.

The IDP scikit-learn and Intel DAAL examples are available in the Code Examples section.

Moreover, we calculated the k-means training cost as the cost of instances on AWS EC2 multiplied by 

the training time for eight Intel Xeon processor nodes and eight V100 GPUs, respectively.

   k-means training cost ($)   = 

Figure 2 shows that using Intel DAAL with eight CPU nodes results in up to 2.64x reduction in k-means 

training cost.

Faster and Cheaper
On AWS EC2, distributed k-means computations are 2.76x faster and 2.64x cheaper with Intel DAAL 

on eight Intel Xeon processor nodes than with RAPIDS cuML on eight V100s. Moreover, Intel Xeon 

processor-based instances can process larger datasets: data that was easily processed on one Intel Xeon 

processor-based node causes “out of memory” errors on eight V100s. With Intel Optane,13 memory 

capacity increases to 4.5 TB per socket (9 TB per two-socket instance), while an NVIDIA DGX-2 has only 

512 GB of GPU memory.
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2 k-means training cost:19 RAPIDS cuML on 8 GPUs and Intel DAAL on eight CPU nodes. 
AWS EC2 (N. Virginia) instance prices: c5.24xlarge (Intel DAAL) - $4.08 per hour 
($32.64 per hour for eight nodes), p3dn.24xlarge (RAPIDS cuML) - $31.212 per hour.

With the oneAPI programming model,9 Intel delivers high performance, not only on the CPU, but also on 

its coming architectures (discrete GPU, FPGA, and other accelerators). oneAPI is delivering unified and open 

programming experience to developers on the architecture of their choice without compromising performance. 

Intel DAAL is a part of the beta Intel oneAPI products. You can try it in the Intel® DevCloud development 

sandbox.14

Intel DAAL k-means Implementation and Optimization Details
The k-means algorithm is based on computation of distances, since it’s used in cluster assignments 

and objective function (inertia) calculation. The distance in d-dimensional Euclidean space between an 
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To calculate squared distances, the k-means implementation in Intel DAAL splits observations into blocks of 

fixed size and then processes them in parallel using Threading Building Blocks.15

Component 	 can be presented as an element mjn of matrix M = 2 S × C, where j is an index of an observation 

in a block, n is an index of a centroid, and S and C are matrices of a block of observations and centroids, respectively. 

To calculate this matrix of distance components, Intel DAAL uses matrix multiplication from Intel MKL.16

The first squared distance component,                   is constant and can be calculated only once for each 

observation, while two others (                      and                )  should be recalculated at each iteration.

At all k-means computation stages, Intel DAAL uses vector instructions from Intel® Advanced Vector 
Extensions 512 (Intel® AVX-512)17 in 2nd-generation Intel Xeon Scalable processors when computing matrix 

multiplication, centroid assignments, and centroid recalculation.

Using advanced software optimization techniques and enabling hardware features allows Intel DAAL to deliver 

high performance k-means clustering.

This is equal mathematically to:

Thus, the squared distance is:
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Code Examples
Dataset generation with scikit-learn:

Running k-means with scikit-learn from IDP:

IDP scikit-learn and daal4py Installation
The best way to install scikit-learn from IDP or daal4py (the Python interface for Intel DAAL)18 is by 

creating a new conda environment:
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Running k-means with daal4py:

k-means Training Configuration
•• CPU configuration: c5.24xlarge AWS EC2 instances; 2nd generation Intel Xeon Scalable processors, 

two sockets, 24 cores per socket, HT on, Turbo on, 192 GB RAM (12 slots/16GB/2933 MHz), BIOS: 1.0 
Amazon EC2* (ucode: 0x500002c), OS: Ubuntu* 18.04.2 LTS.

•• GPU configuration: p3dn.24xlarge AWS EC2 instance; Intel® Xeon® Platinum 8175M processor, two 
sockets, 24 cores per socket, HT on, Turbo on, 768 GB RAM, 8 Tesla V100-SXM2-32G* GPUs with 32 GB 
GPU memory each, BIOS 1.0 Amazon EC2* (ucode: 0x2000065), OS: Ubuntu 18.04.2 LTS.

•• Software: Python* 3.6, numpy* 1.16.4, scikit-learn 0.21.3, daal4py 2019.5, Intel DAAL 2019.5, Intel® MPI 
2019.5, RAPIDS cuML 0.10, RAPIDS cuDF* 0.10, CUDA* 10.1, Nvidia* GPU driver 418.87.01, dask* 2.6.0.

•• Algorithm parameters: Single-precision (float32), number of iterations = 50, threshold = 0, random 
initial centroids.
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Henry A. Gabb, Senior Principal Engineer, Intel Corporation, and Editor, The Parallel Universe

A graph is a good way to represent a set of objects and the relations between them (Figure 1). Graph 

analytics is the set of techniques to extract information from connections between entities.

For example, graph analytics can be used to:
•• Get recommendations among friends in a social network

•• Find cut points in a communication network or electrical grid

•• Determine drug effects on a biochemical pathway

•• Detect robocalls in a telecommunications network

•• Find optimal routes between locations on a map

What Is Graph Analytics? And Why Does It Matter?

Measuring Graph Analytics Performance
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1 Graphs are everywhere

Graph analytics has been getting a lot of attention lately, possibly because Gartner listed it among the top 10 

data and analytics technology trends for 2019:

 	 "The application of graph processing and graph DBMSs will grow at 100 percent annually 			 

	 through 2022 to continuously accelerate data preparation and enable more complex adaptive 		

	 data science.” (Source: Gartner Identifies Top 10 Data and Analytics Technology Trends for 2019)

Intel has a long history of leadership in graph analysis. For example, Intel coauthored the GraphBLAS 
specification to formulate graph problems such as sparse linear algebra. Though the GraphBLAS API was 

just published in 2017, the initial proposal and manifesto were published over 10 years ago. Today, the 

same industry and academic partnership is coauthoring the forthcoming LAGraph specification for a library 

of graph algorithms. Intel was also selected by DARPA to develop a new processor to handle large graph 

datasets (see “DARPA Taps Intel for Graph Analytics Chip Project”). We'll continue to innovate and push 

the graph analytics envelope.

Benchmarking Graph Analytics Performance
Graph analytics is a large and varied landscape. Even the simple examples in Figure 1 show differing 

characteristics. For example, some networks are highly connected; some are sparser. A network of webpages 

exhibits different connectivity than a network of Twitter* users, where some users have millions of followers 

while most have only a few. Consequently, no single combination of graph algorithm, graph topology, or graph 

size can adequately represent the entire landscape.

Therefore, we use the GAP Benchmark Suite from the University of California, Berkeley, to measure graph 

analytics performance. GAP specifies six widely-used algorithms (Table 1) and five small to medium-sized 

graphs (Table 2). Each graph has different characteristics, which is important because optimizations that work 

well for one graph topology may not work well for others. For example, the Road* graph is relatively small, but 

its high diameter can cause problems for some algorithms. Consequently, the 30 GAP data points provide good 

coverage of the graph analytics landscape.
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Table 1. GAP measures the performance of six common graph analytics algorithms.

Table 2. GAP uses five graphs of varying size and topology to give a more complete picture of 
graph analytics performance.

GAP also has the advantages of being a clearly-defined, objective, off-the-shelf benchmark. It doesn't require 

special hardware or software configurations, so it's easy to run. 

Here are the steps I took to run the benchmark:
1.	Download the GAP package.

2.	Run ‘make’ in the gapbs-master subdirectory to build the reference implementations for the six graph 
analytics kernels. For now, I’m just using the default GAP build parameters (the GNU* C++ compiler with the  
-std=c++11  -O3  -Wall  -fopenmp options). My system had the GNU v7.4.0 compiler installed.

3.	In the same directory, run ‘make  -f benchmark/bench.mk bench graphs’ to download or 
generate the five benchmark graphs and convert them to more efficient input formats. 

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://github.com/sbeamer/gapbs


Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

74The Parallel Universe

Table 3. Compute times (in seconds, lower is better) for GAP running on a two-socket Intel® 
Xeon® processor-based system1.  GAP was run with 1, 8, 16, 24, 32, 48, 64, and 96 threads. Best 
performance is shown for each test.

I tried to generate NVIDIA V100* comparative data, but ran into several technical barriers:
1.	Only one of the GAP graphs (Road) fits in the memory of a single V100.

2.	Only one of the GAP algorithms (PR) in RAPIDS cuGraph* can use the aggregate memory of multiple V100s.

3.	The current version of cuGraph does not provide a BC implementation.

4.	The cuGraph APIs and documentation do not expose certain implementation details or algorithm 
parameters. For example, the multi-V100 PR implementation in cuGraph does not provide a convergence 
tolerance parameter, which makes an apples-to-apples comparison to the GAP results difficult.

Consequently, it’s only possible to run nine of the 30 GAP tests (Table 4). As you can see, where GAP 

can run on both architectures, the Intel® Xeon® processors outperformed the V100 on most tests, 

even when the graph is small enough to fit in GPU memory (i.e., Road) or when the algorithm can 

use multiple GPUs (i.e., PageRank). Also, TCO clearly favors Intel Xeon processors for graph analytics 

(Table 5).

4. The GAP reference implementations are parallelized with OpenMP*, so it's important to set the number 					   
     of threads. Otherwise, GAP will use all available cores, even if this doesn’t give the best parallel efficiency. 			     	  	
     The ‘export OMP_NUM_THREADS=32’ command sets the number of OpenMP threads to 32, for example.

 5. Finally, run ‘make  -f benchmark/bench.mk bench run’ to launch the benchmarks and generate 				     	
     results (Table 3).
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Table 4. Compute times (in seconds, lower is better) for cuGraph running on an AWS EC2 
p3.16xlarge instance (eight V100 GPUs connected via NVLink).  All Road tests used a single V100. 
Twitter and Web tests used eight V100s. Note that the multi-V100 PR in cuGraph does not provide 
a convergence tolerance parameter so the default parameters were used for these tests. Kron and 
Urand tests failed with a “thrust::system::system_error.” DNR = Does not run because of 
insufficient memory. NA = Not available in cuGraph v0.9.0.

Table 5. Relative TCO of the Intel Xeon processor and V100 benchmark systems. Note that the AWS 
price comparison is only an approximation because no EC2 instances exactly match the Intel Xeon 
processor-based benchmarking system, but the m4.16xlarge instance is similar.
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Comprehensive, Objective, and Reproducible
I can probably improve the GAP results on the Intel Xeon processor platform (Table 3) with a few simple 

changes like using the Intel® compiler and aggressive optimization and vectorization, tweaking the OpenMP 

OMP_PROC_BIND and OMP_PLACES environment variables, experimenting with the numactl utility, 

adjusting page sizes, etc.—but that’s not the purpose of this article. My goal is to show how easy it is to get 

comprehensive, objective, and reproducible graph analytics performance data without obfuscation or resorting 

to benchmarking tricks.

References
1.	Processor: Intel® Xeon® Gold 6252 (2.1 GHz, 24 cores), HyperThreading enabled (48 virtual cores per socket); 

Memory: 384 GB Micron DDR4-2666; Operating system: Ubuntu Linux* release 4.15.0-29, kernel 31.x86_64; 
Software: GAP Benchmark Suite (downloaded and run September 2019). Processor: NVIDIA Tesla V100*; 
Memory: 16 GB; Operating system: Ubuntu Linux release 4.15.0-1047-aws, kernel 49.x86_64; Software: 
RAPIDS v0.9.0 (downloaded and run September 2019).

2.	Source: https://www.microway.com/hpc-tech-tips/nvidia-tesla-v100-price-analysis/ (accessed September 
2019) and https://ark.intel.com/content/www/us/en/ark/products/192447/intel-xeon-gold-6252-processor-
35-75m-cache-2-10-ghz.html (accessed September 2019)

3.	 Source: https://aws.amazon.com/ec2/pricing/on-demand/ (accessed September 2019)

4.	 See "Boosting the Performance of Graph Analytics Workloads" if you’re interested in tuning GAP.
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