
00001101
00001010
00001101
00001010
01001100
01101111
01110010
01100101
01101101
00100000
01101000
01110001
01110011
01110101

Issue

38
2019

Accelerating XGBoost* for
Intel® Xeon® Processors
Detecting and Mitigating False Sharing in Multi-Processors

Speeding Up Simulation Analysis with yt* and
Intel® Distribution for Python*

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

2The Parallel UniverseCONTENTS
FE

AT
U

RE

Letter from the Editor 3
See You at the Intel® HPC Developer Conference
by Henry A. Gabb, Senior Principal Engineer, Intel Corporation

Accelerating XGBoost* for Intel® Xeon® Processors 5
How to Maximize Processor Performance for Machine Learning

Detecting and Mitigating False Sharing in Multi-Processors 19
Get Big Performance Benefits for Your Multithreaded Applications

Speeding Up Simulation Analysis with yt* and Intel® Distribution for Python* 27
How to Boost Analytics Performance on Intel® Xeon® Scalable Processors

Intel® Software Guard Extensions 33
Using Hardware-Based Isolation and Memory Encryption to Provide More Code Protection in your Applications

Verizon Maximizes Customer Satisfaction through Better Performance 43
Optimizing Application Performance with Powerful Profiling

Composable Threading Is Coming to Julia* 47
Flexible Parallelism in a Productivity Language

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

3The Parallel Universe

See You at the Intel® HPC Developer Conference

Before we get started, I have a couple of news items to pass along. First, the Intel® HPC
Developer Conference returns to Denver, Colorado, November 17 and 18, just before SC19.
Second, there's a new book you'll want to check out: Pro TBB: C++ Parallel Programming
with Threading Building Blocks. It was written by Intel's Michael Voss, Rafael Asenjo from
the University of Malaga, and the editor emeritus of The Parallel Universe, James Reinders. If
you’ll be in Denver next month, stop by the developer conference or the Intel booth at SC19.
I’d like to hear your thoughts on the magazine and topics you want us to cover next year. You
can also meet the authors of the book and learn more about TBB.

In this issue, our feature article, Accelerated XGBoost* for Intel® Xeon® Processors,
describes a series of optimizations that dramatically improve the performance of the popular
XGBoost machine learning library.

Next, we have Detecting and Mitigating False Sharing in Multi-Processors. False sharing is
a subtle performance bug that limits parallel scalability. This article shows you how to detect
and fix this problem using Intel® VTune™ Amplifier.

If you straddle the worlds of HPC and data analytics, you'll want to read Speeding
Up Simulation Analysis with yt* and Intel® Distribution for Python, written with
our collaborators at the Leibniz Supercomputing Centre. This article shows how they
improved post-processing performance using the Intel® Distribution for Python and yt, “a
community-developed analysis and visualization toolkit for volumetric data.”

If you’re interested in improving the security of your software, we have an article on Intel®
Software Guard Extensions that describes the secure enclave model and provides simple
code examples illustrating how enclaves are created and used.

3The Parallel Universe

LETTER FROM THE EDITOR
Henry A. Gabb, Senior Principal Engineer at Intel Corporation, is a longtime high-performance and
parallel computing practitioner who has published numerous articles on parallel programming. He
was editor/coauthor of “Developing Multithreaded Applications: A Platform Consistent Approach”
and program manager of the Intel/Microsoft Universal Parallel Computing Research Centers.

Come meet us in Denver and tell us what topics you want us to explore next
year...and beyond

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/events/hpcdevcon/overview.html
https://www.intel.com/content/www/us/en/events/hpcdevcon/overview.html
https://www.apress.com/us/book/9781484243978
https://www.apress.com/us/book/9781484243978
https://software.intel.com/en-us/vtune
https://software.intel.com/en-us/distribution-for-python

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

4The Parallel Universe

We close out this issue with two editorials: one from Dennis O’Connell, Senior Director of
Performance Engineering at Verizon and another from me.

The first one discusses how Verizon maximizes customer satisfaction using programming
tools like Intel® Parallel Studio XE and Intel® System Studio.

You may remember this article from over two years ago: Julia: A High-Level Language for
Supercomputing (The Parallel Universe, Issue 29). We close this issue with an editorial I
wrote about Composable Threading Coming to Julia*. Composability allows a program
to spawn threads freely without worrying about oversubscribing the hardware because
the runtime scheduler sorts everything out. It’s a powerful new feature of the language. It’s
hard to predict whether Julia will succeed in the saturated marketplace of programming
languages, but with over 10 million downloads and 3,000 packages, it appears to be gaining
popularity. I’ll try to get an updated article from the Julia developers for a future issue of The
Parallel Universe.

As always, don’t forget to check out Tech.Decoded for more information on Intel's solutions
for code modernization, visual computing, data center and cloud computing, data science,
and systems and IoT development.

Hard to believe, but this is our last issue of 2019. We're looking forward to bringing you lots
more in 2020.

Henry A. Gabb
October 2019

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/parallel-studio-xe
https://software.intel.com/en-us/system-studio
https://software.intel.com/en-us/download/parallel-universe-magazine-issue-29-july-2017
https://software.intel.com/en-us/download/parallel-universe-magazine-issue-29-july-2017
https://software.intel.com/en-us/download/parallel-universe-magazine-issue-29-july-2017
https://techdecoded.intel.io/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

5The Parallel Universe

Egor Smirnov, Software Engineering Manager, Intel Corporation

Gradient boosting1 has many real-world applications as a general-purpose, supervised learning

technique for regression, classification, and page ranking problems. The algorithm earned its fame in

Kaggle* platform machine learning competitions, where it was recognized as the most popular machine

learning algorithm. It’s a common choice for large problems with a gradient-boosting model, with a

histogram tree-building method2 that helps to reduce training time without losing accuracy.

Training implementation of this method is quite complex because:

How to Maximize Processor Performance for Machine Learning

AccELERATIng XgBOOsT* FOR
InTEL® XEOn® pROcEssORs

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

6The Parallel Universe

 • It contains many kernels that impact execution time.

 • It doesn’t use BLAS*/LAPACK* or other common functions that are already highly optimized for many
architectures.

 • There are many things that require specific optimization techniques like irregular memory accesses,
loops with dependencies, branch miss-prediction, etc.

This was a reason why optimizations for the XGBoost* library were limited before version 1.0. Intel

has since made many optimizations to maximize performance during XGBoost training.

Measuring Performance Gains
Table 1 compares XGBoost 0.81 to XGBoost 1.0. We added measurements with Intel® Data Analytics
Acceleration Library (Intel® DAAL),3 a highly optimized library for Intel® CPUs, to show the potential

gains that can be available in future XGBoost versions. Figure 1 shows the gradient boosting training

speedup versus the XGBoost baseline.

Table 1. XGBoost 0.81 and XGBoost 1.0 comparison

We can see from Table 1 that the:

 • Performance gain for the new XGBoost version is 11x on average, depending on the number of
cores, training parameters, and data set dimensions.

 • XGBoost performance is quite close to a state-of-the-art library in terms of performance on Intel®
Xeon® processors with Intel DAAL.

 • Intel Xeon processor implementation is competitive with the GPU implementation.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

7The Parallel Universe

1 Gradient boosting training: Speedup versus the XGBoost CPU baseline, v0.81
(higher is better). For more complete information about performance and benchmark
results, visit www.intel.com/benchmarks.

What Makes XGBoost Faster on Intel® Xeon® Processors?
The original source of the optimizations is Intel DAAL. Most of its techniques were moved to XGBoost. Let’s

take a deep dive into these changes to understand the source of the performance improvements. First,

we’ll prepare a breakdown for all functions in XGBoost 0.81 version (Table 2). Next, we’ll look at the same

functions, focusing on the percentage of training time (Table 3). We can see that most of the time is taken

by the BuildHist function, so let’s take a closer look at histogram building.

Table 2. Time spent in XGBoost 0.81 functions (See Appendix for system configuration details.)

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
http://www.intel.com/benchmarks

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

8The Parallel Universe

Building Histograms
The task of the histogram is building gradients and Hessians for training samples at each boosting

iteration. These can be summed into histogram bins according to the new, discrete features. Finding

optimal splits for a decision tree is reduced to the simple problem of searching over histogram bins in a

discrete space.

Bin-Matrix Layout
Let’s start by choosing the memory layout for bin-matrix that gives the best performance. There are

two choices:

 • column-major

 • row-major

To make the best choice, let’s look at memory-access patterns for bin-matrix. First, we’ll look at the

column-major format (Figure 2).

Table 3. Percentage of training time in XGBoost 0.81 functions

Read more >

Exascale Computing Will Redefine Content Creation
JIM JEFFERS, INTEL CORPORATION

Raja Koduri, Intel’s Chief Architect and Senior Vice President of the Architecture, Software
and Graphics group, has challenged my team and others across Intel to deliver a 1000x
workflow improvement for creators over the next three years. At Intel’s first CREATE event
on July 30, Raja, Jim Keller (the General Manager of Intel’s Silicon Engineering Group) and I
laid out our plan to deliver this ambitious improvement to the creator community.

BLOg HIgHLIgHTs

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://itpeernetwork.intel.com/exascale-computing-will-redefine-content-creation/#gs.7l8ob5

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

9The Parallel Universe

Before we can understand the advantages and disadvantages of memory layouts, we need to understand

how memory works on the Intel Xeon processor. It fetches data to caches by cache lines (with a common

length of 64 bytes). This means when we load one memory location, we’ll actually fetch many others

down the line. Efficient memory reading depends on how many numbers from the loaded cache line will

be reused.

Now, let’s look at disadvantages of the column-major approach:

 • For not-root nodes, each cache line will touch only some of the elements needed for the current
node for lower tree levels. This reduces the number of useful elements per cache.

 • If we read one column, it might contain repeated bin indices. This means some data dependencies
(read after write [RAW] dependency) will lead to poor hardware pipeline utilization.

Another approach is to use the row-major data format (Figure 3).

2 Column-major format. Blue means this data is used for histogram computation.
White means it is not.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

10The Parallel Universe

3 The row-major data format

There are three advantages to using the row-major data format over the column-major format:

1. For not-root nodes, memory access is still not uniform. But when we read a cache line, we fetch
several adjacent elements that will be used for subsequent computations. This leads to better cache
utilization and, as a result, better performance.

2. There are no data dependencies when we read one row.

3. There is better load balancing for threading due to the number of samples and threads.

This doesn’t bring any performance issues when the histogram fits into the cache. But when the number

of features is large enough, and the histogram does not fit into the cache, we can see performance

degradation. In this case, it’s better to use a mixed layout―row-major with some blocking by columns.

However, usually histograms are not large enough and the row-major format shows better results

because it works better with memory. All of these things lead us to choose the row-major approach in

XGBoost and Intel DAAL.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

11The Parallel Universe

Histogram Computation: Low-Level Optimizations
XGBoost versions 0.81 and lower had a simple way to build histograms:

Let’s consider how we can improve this.

Software Prefetching
In modern Intel® processors, built-in hardware prefetching can recognize many memory access patterns.

Using explicit software prefetching doesn’t improve performance in this case, and can even lead to a

slowdown due to the overhead of prefetch instructions.

Threading
Histogram computation is easily parallelized by row blocks using a simple «map» pattern. As a result, we

will have partial histograms on each thread. These should be merged to one before finding the best split.

In the previous implementation, we had the number of rows and a number of threads for each parallel

task, with the smallest size being 8. A problem here is that some low decision tree nodes can contain only

10 to 500 samples. This is too small to parallelize efficiently because the overhead of creating the tasks

can be larger than the cost of the histogram computation. To reduce this overhead and improve scalability,

we limited block size to 512 rows.

Batch Operations
In the depthwise building mode, we can build nodes in parallel by levels in a tree. To enable

parallelism―not only in building one node, but also by nodes―batch functions have been introduced. It

allows us to create nested parallelism and improve scaling. Table 4 shows the results after optimizing for

histogram building. Table 5 shows the changes in execution time by percentage.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

12The Parallel Universe

Table 4. Performance before and after histogram building optimization

Table 5. Changes in the percentage of execution time

Before optimization, building histograms accounted for up to 82% of all training time. Now, it consumes

less than 25%. Also, the new hotspot for all data sets is the ApplySplit function (which partitions a set

of observations in some decision tree nodes to two parts). Let’s look at how we might optimize this.

Partition Algorithm
The partition operation in the ApplySplit function (Figure 4) works like this:

 • After finding the best split (we have an index of the feature to split), run SplitIndex and split the point
in the current node to two successors. This is known as SplitCondition.

 • Get the SplitIndex column.

 • Choose the elements in the column that are less than SplitCondition. Indices of these elements
should go to one part. The rest go into another part.

LEARn
MOREInTEL® ADVIsOR

Optimize Code for Modern Hardware

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

13The Parallel Universe

4 Partition algorithm

As a result, the first indices in the row will represent indices of observation, which should go to the

left successor. The second part of the row goes to the right successor. According to the algorithm,

this partition should be stable. This means that indices in each part should be sorted. But there are

two problems:
1. Bin-matrix is row-major, but we need to read only one column. This leads to reading with

 constant stride.

2. Threading requires communication between threads.

The main problem with this kernel is finding opportunities for efficient parallelization. Here’s the

scheme we used (Figure 5):
1. Divide row index array among threads.

2. Make a local partition in some local buffer.

3. Synchronize the threads with a goal of sharing the number of elements in each local partition.

4. Update the row index by copying elements from local buffers.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

14The Parallel Universe

Table 6 shows our results after partition optimizations. Table 7 shows changes in the percentage

of execution time.

With these optimizations in place, new performance hotspots emerge:
 • EvaluateSplit: Find the best split by histograms.

 • UpdatePredictionCache: Update predictions for the training dataset according to the built tree.

 • InitData: Choosing observations for training, among other things.

Let’s try to reduce the execution time for these, too.

5 Parallelization scheme

InTEL® MATH KERnEL LIBRARy FREE
DOwnLOADFast Math Processing for Intel®-Based Systems

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

15The Parallel Universe

Table 6. Results after partition optimizations

Table 7. Changes in the percentage of execution time

Other Optimizations

Finding the Best Split
This kernel decides what feature and split point to choose for node splitting. Here are two optimizations

that have been done:

1. To handle missing values, XGBoost tries to find the best split by two searches. In the first, all missing

values come to the left node. In the second, they come to the the right node. In theory, this should

improve performance twofold.

2. Compute the best split for both left and right nodes on one thread to keep and reuse the data that

is already in the caches.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

16The Parallel Universe

.UpdatePredictionCache and InitData

The main performance problem with UpdatePredictionCache and InitData was simply sequential

code that could easily be threaded. Adding OpenMP reduced the time for these functions significantly.

Tables 8, 9, and 10 show the breakdown by kernel after all optimizations.

Table 8. Breakdown for XGBoost 0.81

Table 9. Breakdown for XGBoost 1.0

Table 10. Final breakdown in percentages

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

17The Parallel Universe

To-Do List
There are more changes we can make to achieve even better performance on Intel Xeon

processors:
 • Change the type of bin-matrix from int32 to uint8 to reduce the amount of memory needed for

histogram computation.

 • Introduce a cache for prediction in multiclass cases.

 • Use SIMD code to build histograms and partitions.

These optimizations will have to wait for a future article.

References
1. Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In 22nd SIGKDD

Conference on Knowledge Discovery and Data Mining, 2016.

2. Hyunsu Cho. Speeding Up Gradient Boosting for Training and Prediction.

3. Intel DAAL

Appendix: Gradient Boosting Training Configuration
 • CPU configuration: c5.metal AWS instance (2nd generation Intel® Xeon® Scalable processors, two sockets, HT:on, Turbo:on, OS:

Ubuntu 18.04.2 LTS, total memory of 193 GB (12 slots/16GB/2933 MHz), BIOS: 1.0 Amazone EC2 (ucode: 0x5000017), OMP
environment: OMP_NUM_THREADS=48 OMP_PLACES={0}:96:1).

 • GPU configuration: p3.2xlarge AWS Instance (CPU: Intel® Xeon® E5-2686 v4 processor @ 2.30GHz, one socket, four cores, HT:on,
Turbo:on, GPU: Tesla* V100-SXM2-16G (driver version: 410.104, CUDA* version: 10.0), OS: Ubuntu* 18.04.2 LTS, total memory: 61
GB (4 / 13312 MB), BIOS: 4.2 Amazone* EC2 (ucode: 0xb000037)).

 • Software: XGBoost* 0.81: download from PIP*. XGBoost 1.0: master (ef9af33a000f09dbc5c6b09aee133e38a6d2e1ff), compiler
– G++ 7.4, nvcc 9.1. Intel DAAL: 2019.4 version, downloaded from Conda*. Python* environment: Python 3.6, Numpy 1.16.4,
Pandas* 0.25, Scikit-learn* 0.21.2.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

cODE yOuR
VIsIOn

Accelerate your AI from edge to cloud.
Intel® Distribution of OpenVINO™ toolkit

speeds up computer vision workloads,
streamlines deep learning deployments,

and enables easy heterogeneous
execution across Intel® platforms.

FREE DOwnLOAD >

Software

For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.
Intel, the Intel logo, and OpenVINO are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
© Intel Corporation

https://software.intel.com/en-us/openvino-toolkit

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

19The Parallel Universe

Ramesh Peri, Senior Principal Engineer, Intel Corporation

Multi-core, single-node systems with multiple layers of local caches per core are now commonplace.

An average laptop has at least two or more cores, while servers have tens of cores. Software takes

advantage of these cores through multithreading. Since the threads are operating on shared data

structures in a common address space, copies of data present in local caches of different cores must

coordinate with each other. For example, if two threads are accessing the same memory location, the

memory subsystem needs to validate and update the copies present in local caches as threads update

them. (This is independent of the synchronization mechanisms that multithreaded programs use to

ensure atomic updates to shared memory locations.) The memory subsystem guarantees this

Get Big Performance Benefits for Your Multithreaded Applications

DETEcTIng AnD MITIgATIng FALsE sHARIng
In MuLTI-pROcEssORs

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

20The Parallel Universe

coherence by implementing a complex cache coherence protocol, which can impact performance

when multiple threads access and update shared memory locations.

This article explores the cache coherence protocols and their impact on the performance of

multithreaded programs.

Cache and Cache Coherency Protocols
A cache is a small, fast memory the CPU uses to store copies of frequently used locations from main

memory. In a multi-core system, every CPU has its own cache that stores copies of main memory

locations. To maintain program correctness, the CPUs synchronize and update the contents of these

caches during execution. Data is transferred from memory to the caches, typically in blocks of 64 or

128 bytes. When the CPU needs to read or write a location in memory, it first checks whether the

address is present in any of the cache lines. If it’s present, the CPU fetches it from there. If it’s not

present, a new entry is allocated in the cache for future use.

In the case of multi-core machines, the CPU needs to check its local cache, as well as the caches of

the other cores, before it decides whether to bring the contents from memory. To reduce the amount

of checking needed on every memory access across all caches of all cores, certain information is

stored in every cache line. This information is known as MESI (modified/exclusive/shared/invalid).

On the first load of a cache line, the CPU marks the cache line as “Exclusive” access. All subsequent

loads can use this data as long as it stays in Exclusive mode. If the same cache line is loaded by

another CPU, then the cache line is marked as “Shared” in all caches of other CPUs. If a CPU writes

to a cache line marked as “Shared,” then it’s marked as “Modified” and all other CPUs are sent an

“Invalid” cache line message. If the CPU sees a cache line marked “Modified” being accessed by

another CPU, it stores the cache line back to memory and marks its cache line as “Shared.” The other

processor that’s accessing the same cache line incurs a cache miss and fetches the updated copy

from main memory.

We can see that accessing a memory location by a CPU in a "Modified" state in another CPU cache incurs:

 • A write to memory

 • A read from memory

For memory locations accessed by multiple threads running on different cores, this is necessary to

provide up-to-date values and maintain guarantees of the memory model.

For efficiency, the cache coherence protocol operates at the level of cache lines instead of individual

bytes. This gives rise to a phenomenon called false sharing (Figure 1). In false sharing, threads

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

21The Parallel Universe

1 False sharing in a multi-core system

accessing different memory locations that happen to be present on the same cache line also go through

coherence mechanisms of the cache coherence protocol, incurring performance penalties. In some cases, this

performance penalty can be significant.

In Figure 1, the threads sum and inc, running on core 0 and core 1, respectively, access two different memory

locations that happen to be in the same cache line. Since the cache coherency protocol operates at cache

line granularity, every access to x by the sum thread after an access to y by the inc thread will incur a

performance penalty as though the two threads are accessing same variable.

Detecting Sharing Among Caches
The performance monitoring unit on Intel® processors has the ability to monitor different kinds of events that

happen in the microarchitecture during the execution of a program. There are a number of events related to

referencing a memory location in a modified, exclusive, or shared state in the cache of some other CPU in the

system. These events include the string ‘HIT<M/E/S>’. By monitoring these events, we can see if there's any

cross-referencing of cache lines among cores. For example, on Goldmont-based platforms, we can monitor

MEM_UOPS_RETIRED.HITM to determine the number of references to cache lines that are in the modified

state in other CPUs' caches. In the case of Skylake family processors, we can monitor false sharing by looking

struct {

 int x;

 int y;

} v;

/* sum & inc run in parallel */

int sum(void)

{

 int i, s = 0;

 for (i = 0; i < 1000000; ++i}

 s+=v.x;

 return s;

}

void inc(void)

{

 int i;

 for (i=0; <`1000000; ++i)

 v.y++;

}

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://en.wikipedia.org/wiki/Goldmont
https://en.wikipedia.org/wiki/Skylake_(microarchitecture)

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

22The Parallel Universe

at a number of events and applying a formula over them. (Intel® VTune™ Amplifier computes all the

needed metrics automatically.)

A Microbenchmark to Illustrate False Sharing
The code in Figure 2 creates a specified number of threads and gets those threads to access an array

with a specified pattern. This code takes as arguments the number of threads and the starting index for

each of these threads to access an array. Running this code with arguments 4 0 1 2 3 generates the

access pattern shown in Figure 2. Here, we can see that all four threads are operating on different array

elements located in the same 64-byte cache line (Figure 3). This access pattern causes the processor

to “ping-pong” the cache line among the local caches of various cores running these threads, which can

limit parallel performance.

Running the code with arguments 4 0 64 128 192 results in the access pattern shown in Figure 4. Each

row corresponds to a different cache line. We can see that every thread is operating on array elements that

are in different cache lines.

It’s important to note that in both instances (Figures 3 and 4), the number of instructions retired, and

the memory loads and stores, are exactly the same for every thread. Also, all these threads are always

accessing different elements in the array. So we can conclude that any performance difference between

these two runs of the program is due to the behavior of the cache subsystem.

Performance Evaluation of the False Sharing Microbenchmark
The microbenchmark was run in the Intel VTune Amplifier performance analysis tool for cases with

and without false sharing. Figure 5 shows the summary view with false sharing and Figure 6 shows the

summary view without false sharing. We can see that in both cases, the amount of work done by both the

runs is the same (since both runs are executing the same number of instructions, which is around 5 billion).

But the runs take different numbers of clock cycles―about 12.4 billion clocks with false sharing and

3.5 billion clocks without false sharing, which is almost 3x slower. It’s important to note that Intel VTune

Amplifier detects and reports this as being 100% store-bound, because the threads are waiting for the

stores of other threads to complete, which is caused by false sharing of cache lines.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/vtune

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

23The Parallel Universe

2 Microbenchmark for generating different memory access patterns

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

24The Parallel Universe

3 Memory access pattern generated by the code in Figure 2 with arguments 4 0 1 2 3,
which has false sharing for caches with 64-byte cache lines.

4 Memory access pattern generated by the code in Figure 2 with arguments 4 0 64 128 192,
which does not exhibit false sharing for caches with 64-byte cache lines.

5 Summary view from Intel VTune Amplifier for the memory access pattern that
exhibits false sharing (Figure 3)

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

25The Parallel Universe

6 Summary view of Intel VTune Amplifier for memory access pattern that does not
exhibit false sharing (Figure 4)

Preventing False Sharing
False sharing can have a big performance impact in multithreaded applications and can arise from the

way the compiler, or the user, lays out shared data structures. Performance for the microbenchmark can

be 3x worse due to false sharing. Profiling tools like Intel VTune Amplifier have built-in analysis tools that

can detect false sharing and alert the developer.

For More Information
1. MESI Protocol
2. Intel VTune Amplifier
3. Intel® 64 and IA-32 Architectures Software Developer Manuals

InTEL® VTunE™ AMpLIFIER
Modern Processor Performance Analysis

DOwnLOAD
A FREE TRIAL

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://en.wikipedia.org/wiki/MESI_protocol
https://software.intel.com/en-us/vtune
https://software.intel.com/en-us/articles/intel-sdm

Welcome to Tech.Decoded, the
Knowledge Hub for Developers

You’ll find an always-growing library of
information curated to help you get the
most out of modern hardware. Boost your
competitive edge. And get to market faster.

Get Expert Insights
Watch tech forecasters and visionaries explore
today’s tech landscape: code modernization,
systems and IoT, data science, and more.

Dig Deeper
Learn how to get every last ounce of
performance from your code with on-
demand webinars covering today’s most
important strategies, practices, and tools.

Put it All to Work in your Code
Use short videos and articles to understand
the how-to’s of key programming tasks using
specific development tools.

DEcODE yOuR
TEcH FuTuRE

Software

EXpLORE TEcH.DEcODED nOw >
For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.
Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
© Intel Corporation

https://techdecoded.intel.io/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

27The Parallel Universe

Salvatore Cielo, PhD, Scientific Computing Expert, Leibniz Supercomputing Centre; Luigi Iapichino,
PhD, Scientific Computing Expert, Leibniz Supercomputing Centre; Fabio Baruffa, PhD, Technical
Consulting Engineer, Intel Corporation

As modern scientific simulations grow in size and complexity, even their analysis and post-processing

becomes increasingly demanding―calling for the use of HPC resources and methods. yt* is a parallel,

open-source, post-processing Python* package for numerical simulations in astrophysics, made

popular by its:
 • Cross-format compatibility

 • Active community of developers

 • Integration with several other professional Python instruments

How to Boost Analytics Performance on Intel® Xeon® Scalable Processors

spEEDIng up sIMuLATIOn AnALysIs wITH yT*
AnD InTEL® DIsTRIBuTIOn FOR pyTHOn*

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

28The Parallel Universe

Intel® Distribution for Python* enhances yt's performance and scalability by optimizing lower-

level libraries like NumPy* and SciPy*, which make use of the optimized Intel® Math Kernel Library
(Intel® MKL) and the Intel® MPI Library for distributed computing. The library package yt is used for

analysis tasks like:

 • Integration of derived quantities

 • Volumetric rendering

 • 2D phase plots

 • Cosmological halo analysis

 • Production of synthetic X-ray observation

In this article, we’ll provide a brief tutorial for installing yt and Intel Distribution for Python and show

how to execute each analysis task. Compared to the Anaconda* Python distribution, this solution can

deliver net speedups up to 4.6x on Intel® Xeon® Scalable processors.

Installing yt in the Intel and Anaconda* Python Environment
We’ll need a Python 3 environment (we chose version 3.6) to create the Anaconda package manager.

For the installation of the Intel-optimized software, we need to add the Intel channel first:1

Now we can create the environment, which we name my_yt, and install yt and all the packages we’ll

need, including the required dependencies. For Intel, the procedure is:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/distribution-for-python
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mpi-library
https://yt-project.org/doc/index.html
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

29The Parallel Universe

Repeating the channel name ensures the correct origin of all dependency packages, while the -y

option suppresses the confirmation prompt. Conda’s installation help can be displayed at any time

with conda install -h.

To use Anaconda Python, which we need for performance comparisons, just replace -c intel

with -c anaconda (which changes the environment name). Alternatively, you can use the all-in-

one installation script from the yt webpage, providing the Anaconda version within the Miniconda*

environment.

Tutorial: Common Post-Processing Tasks
Now let’s review a number of tasks that allow us to analyze simulation data. (You can see these, and more

advanced options, in the yt 3.5 tutorial.²) We’ll use a cosmological simulation including stars, dark matter,

and interstellar gas run with ENZO.*3 Since yt reads several formats, it’s a good general-purpose volume

renderer.

To ensure proper mpi4py parallelization, the tasks must be scripted and Python invoked in parallel, with

mpiexec or equivalent (e.g., mpiexec -np 8 python my_tasks.py). We begin by importing yt and

mpi4py, enabling mpi4py, loading the chosen snapshot, and performing a spherical selection (sp) of of

yt knows several derived quantities to compute from the snapshot data fields. We choose the total

angular momentum per unit mass j of both gas and particles (dark matter, stars), which is interesting for

halo shape studies or matter accretion purposes (e.g., around black holes). This is calculated algebraically

from 3D positions and velocities, and integrated over sp in just one line:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

30The Parallel Universe

Then we use print(j) to print the value of j in the correct unit system.

Likewise, it’s easy to learn about the thermodynamic state of the gas through a phase-plot, binning

the fields in 2D histograms. In this way, you can get pressure-volume diagrams for energy measures or

density-temperature diagrams showing the gas’ equation of state.

The two simply additive tasks described above make use of yt’s efficient grid parallelism (i.e., a

straightforward distribution among the active mpi4py processes of the basic elements―grids or

particles―over which the fields are defined).4 For more complex tasks, like volume rendering or

cosmological halo analysis, we need to use a proper spatial decomposition of the domain (more powerful

but less efficient). Volume renderings in yt are obtained through ray casting. In the most compact instance,

an image im of the gas density is printed by:

Refined controls on the scene object sc (transfer function, colormap, camera), and over the image itself

(sigma clipping, opacity), are available.

Finally, let’s look at synthetic X-ray observations with the pyXSIM package, using SOXS (dependency

of pyXSIM) to simulate a real telescope (Chandra’s ACIS-I*).5 We begin by setting the parameters of the

telescope and observation, including a thermal X-ray emission model for the gas, telescope collecting

area, and the exposure time:

InTEL® MpI LIBRARy FREE
DOwnLOADFlexible, Efficient, and Scalable Cluster Messaging

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.seek.intel.com/performance-libraries
https://software.seek.intel.com/performance-libraries

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

31The Parallel Universe

pyxsim then computes individual photon packages using Monte Carlo radiative transfer (photons task),

and finally projects them onto the detector (events task). The model includes hydrogen absorption.

The data can then be printed out, and the simulated instrument applied (optional). You can also adjust

exposure, celestial coordinates (here, 45 and 30 degrees), and photon energy extrema (here, set to 0.5 and

11 electronVolt). This completes all scripted tasks.

Speedup from Intel Distribution for Python
We ran a scaling test of all the tasks for both Anaconda and Intel Distribution for Python over a single Intel

Xeon Scalable processor node, and plotted the shortest execution time (median of 20 measurements) in

Figure 1.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

32The Parallel Universe

1 Performance comparison of Anaconda and Intel Distribution for Python on all tasks.
We plot the shortest execution time (log scale) on one Intel Xeon Scalable processor
node. Intel Distribution for Python improves the performance up to 4.6x.

Intel Distribution for Python improves performance up to a factor 4.6x, with longer tasks tending to

show larger improvements. The halos task is an exception, since instead of grid or spatial parallelism, yt

distributes individual halos (once they’re found) among the processes. The full data fields are still accessed

for computation, so the task is not embarrassingly parallel, but the work sharing is easier. The speedup we

see is due to better scaling, and the value may increase with the number of halos.

Concerning code scalability, Anaconda always performed better in serial than in parallel, except for the

events task, scaling up to two mpi4py processes. So the only convenient parallelization on Anaconda is,

unfortunately, yt’s embarrassingly parallel scheme over time series or different objects.4 Intel Distribution

for Python scales easily up to 8 or 16 cores, allowing a much better usage of the shared resources―which

is important for larger tasks or simulations.

References
1. Installing Intel® Distribution for Python* and Intel® Performance Libraries with Anaconda*
2. The yt Project Overview
3. ENZO: An Adaptive Mesh Refinement Code for Astrophysics
4. Parallel Computation with yt
5. pyXSIM Documentation

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/using-intel-distribution-for-python-with-anaconda
https://yt-project.org/doc/
https://ui.adsabs.harvard.edu/abs/2014ApJS..211...19B/abstract
https://yt-project.org/doc/analyzing/parallel_computation.html#parallel-computation
http://hea-www.cfa.harvard.edu/~jzuhone/pyxsim/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

33The Parallel Universe

Rama Kishan Malladi, Performance Modeling Engineer, Intel Corporation

Intel® Software Guard Extensions (Intel® SGX) is a set of CPU instructions that help application

developers protect their code and data regions from disclosure and/or modification. The data

being protected could include sensitive information such as passwords, account numbers, financial

information, or health records that are intended to be accessed only by a designated recipient.

Intel SGX enables applications to create protected enclaves in an application’s address space. These

enclaves are built into, and loaded as, a Windows* Dynamic Link Library (DLL) file. Using enclaves, Intel

SGX helps reduce the surface of an attack, as shown in Figure 1.

Using Hardware-Based Isolation and Memory Encryption to Provide More
Code Protection in Your Applications

InTEL® sOFTwARE guARD EXTEnsIOns

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/sgx

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

34The Parallel Universe

Features
To design an application using Intel SGX, you split the application into two components:

1. A trusted region
2. An untrusted region

The trusted region (code and data) constitutes an enclave. An application can have one or more

enclaves. The untrusted code is the rest of the application. It’s a good idea to keep the trusted region of

code and data as small as possible.

Figure 2 shows how to build an app with both trusted and untrusted regions. The trusted regions

(enclaves) are placed in trusted memory. Enclaves are invoked, executed, and returned. External access

to enclave code/data is denied.

Intel SGX provides several protections from attacks:

 • Enclave memory is protected. It can’t be read/written from outside the enclave.

 • Enclave memory is encrypted. It can only be decrypted by the CPU (with a stored key).

 • A production enclave can’t be debugged by a hardware or software debugger. A debug build and
Intel SGX debugger are required for debugging.

 • Enclave functions can’t be entered through function calls/jumps. SGX instructions are required. The
entry points into an enclave are predefined during compilation.

 • Intel SGX protects the confidentiality and integrity of the enclave code and data.

1 Vulnerability without and with Intel® SGX enclaves

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

35The Parallel Universe

2 Intel® SGX application flow

Note that to use Intel SGX, the processor must support it. Also, Intel SGX must be enabled in the BIOS and the

software stack (Intel® SGX Platform Software) must be installed. (Check references 1 and 2 for details.)

Instructions and Structures
Intel SGX is a collection of two instruction extensions:

1. SGX1 instantiates a protected container, referred to as an enclave.

2. SGX2 allows additional flexibility in the runtime management of enclave resources and thread execution
within an enclave.

The Intel SGX instructions are grouped under Ring 0 and Ring 3 privilege.

Table 1 shows the Intel SGX1 instructions for enclave setup, execution, and management. SGX2 adds

instructions such as EAUG, EACCEPT, and EMODT… for adding a page, accepting changes to a page, and

modifying TCS structure (more on using these later).

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

36The Parallel Universe

Table 1. SGX1 supervisor and user mode instructions

Intel SGX enclave operation uses many data structures, including:

 • Intel SGX Enclave Control Structure (SECS)

 • Thread Control Structure (TCS)

 • State State Area (SSA)

 • Page Information (PAGEINFO)

 • Security Information (SECINFO)

 • Paging Crypto MetaData (PCMD)

The structures such as SECS are unique per enclave and contain metadata that’s immutable once it’s

instantiated and can only be accessed by the processor. TCS structure indicates the execution point into

an enclave.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

37The Parallel Universe

Enclave Page Cache
The enclave page cache (EPC) is secure storage used by the processor to store enclave pages. These 4KB

pages can be marked either valid (if they belong to an enclave instance) or invalid. The metadata for the

EPC pages is held in an internal microarchitecture structure called an enclave page cache map (EPCM).

The EPC is typically configured at BIOS/boot and the contents are encrypted (if allocated in DRAM). The

pages are decrypted when they’re inside the physical processor core. The keys are generated at boot and

stored within the processor.

The Intel SGX instruction set has support for managing content on these EPC pages. The size of the EPC is

implementation-specific (in some processors, it’s 128MB maximum). The EPC is allocated in the processor

reserved memory (PRM). Figure 3 shows this hierarchy.

3 Enclave data is stored in EPC, which is a subset of the PRM3

Enclave Operation
Figure 4 shows an enclave’s lifecycle.3 An enclave is born when the system software issues an ECREATE

instruction, which allocates a free EPC page into the SECS for this new enclave. The ECREATE initializes

the SECS structure with the required BASE address, SIZE, and other parameters and marks the enclave

as uninitialized. Using the EADD instruction, the system software loads code and data into the enclave.

Attempting to EADD a page on an initialized enclave would result in a fault.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

38The Parallel Universe

After loading the code and data pages, the enclave must be initialized using the EINIT instruction. After

a successful initialization, the enclave can be invoked from application software. Using the EREMOVE

instruction, an enclave can be destroyed and the corresponding EPC pages released. Figure 5 shows

the enclave creation steps and the corresponding state updates.4 (For details about Intel SGX, check the

references section.)

4 Intel SGX enclave lifecycle management instructions and state transition diagram3

5 Enclave creation steps4

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

39The Parallel Universe

To establish trust, an enclave must do three activities:

1. Measurement to establish identity of the enclave

2. Attestation to demonstrate authenticity

3. Sealing to save it for later

An enclave measurement is accomplished by having it signed by the enclave author. Specifically, a 256-

bit hash for the code and data, the author’s public key, security version number, and the product ID of the

enclave are all stored and compared. (You can find details on attestation and sealing in the references.)

You can expect some performance impact with Intel SGX. How much depends on:

 • The number of enclave transitions (recommended to be minimum)

 • The enclave memory access (encryption/decryption)

 • EPC size (paging issues)

Programming Intel SGX SDK
The first step in designing an Intel SGX-enabled application is to identify the assets (data, code) it needs

to protect and place them in a separate trusted library (the enclave). This is no different from any regular

application code except that the enclave code is loaded in a special way so that any untrusted application,

system software, VMM, or OS cannot directly read data or change code within the enclave.

The first generation of the Intel SGX architecture requires all the functionality inside an enclave to be

statically linked at build time. An enclave must expose an API for applications to call in (ECALL) and the

services it needs from the untrusted domain (OCALL). Figure 6 shows ECALL/OCALL. The ECALL and

OCALL define the enclave boundary interface. To minimize the attack surface, the number of ECALL

interfaces exposed should be limited.

6 SGX application design considerations

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

40The Parallel Universe

The elements of an Intel SGX runtime system would include an Untrusted Run-Time System (uRTS)

and a Trusted Run-Time System (tRTS). The code within an enclave would constitute tRTS (receives

ECALLs and makes OCALLs) and all the code outside of an enclave would be uRTS (makes ECALLs

and receives OCALLs). The Intel SGX SDK provides APIs, libraries, and sample code to help developers

write security applications using the Intel SGX technology. Using the Intel SGX SDK, you could create

an Intel SGX enclave project with the necessary trusted/untrusted enclave C++ and EDL files.

An EDL (enclave definition language) file is used to define the enclave interface. These files would

have an .edl file extension. The EDL files would define the interfaces and data types the enclave will

support. There are two parts to the EDL file:

1. The trusted section with ECALLs

2. The untrusted section with OCALLs

At least one ECALL is needed to enter an enclave. An OCALL is optional. Figure 7 shows the syntax of

an EDL file. An EDL (library) and its functions can be selectively imported from other projects.

7 An EDL file syntax/definition

Any Intel SGX application would first have to check the status of the device to see if Intel SGX is

enabled using the sgx_enable_device API in the Platform Software (PSW). The next step would

be to create an enclave using the sgx_create_enclave function (this is uRTS code). This call

would load the enclave into the enclave memory. The sgx_sign.exe tool (in Intel SGX SDK) should

be used to first sign the enclave that is being built as a DLL (Windows* dynamic link library) or Linux*

shared object. Once the enclave is loaded, it’s initialized by the tRTS after authenticating the enclave

attributes. The uRTS and tRTS are part of the PSW and an Intel SGX application would have at least

one project for each. The Intel SGX SDK has these tools to help build Intel SGX projects:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

41The Parallel Universe

 • Edger8r for generating trusted/untrusted interfaces

 • Signing tool

 • Debugger

 • CPUSVN configuration tool

 • Enclave Memory Measurement tool to measure usage of protected memory

Given the base EDL definitions/files, the Edger8r generates the trusted and untrusted bridges between

the application and the enclave (with _u.h/.c and _t.h/.c file extensions). Data being sent to and

received from an enclave is marked with attributes [in], [out] or [in, out]. Figures 8 through 10
show the enclave creation and execution steps for sample enclave code. A complex SGX application with

more functions/interface definitions could be built along the same lines.5

8 Enclave1.edl sample code

9 Enclave1.cpp sample code

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

42The Parallel Universe

Increasing Application Security
Intel SGX provides a set of instructions that help increase the security of an application’s code and data.

This is accomplished by partitioning an application into enclaves (trusted regions with memory protection).

The Intel SGX SDK provides APIs, libraries, and tools to help developers leverage the processor SGX

features.

References
1. Intel® Secure Guard Extensions SDK
2. Intel® SGX Programming Reference
3. Intel SGX Explained
4. Overview of Intel SGX - Part 1, SGX Internals
5. Intel® Software Guard Extensions Developer Guide

10 The Enclave1.dll (and Enclave1.signed.dll) have “foo” (enclave) function
defined and exposed for an untrusted console application (main) to execute.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/sgx/sdk
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://eprint.iacr.org/2016/086.pdf
https://blog.quarkslab.com/overview-of-intel-sgx-part-1-sgx-internals.html
https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

43The Parallel Universe

Guest Editorial by Dennis O’Connell, Senior Director of Performance Engineering, Verizon
Verizon

Verizon is a global leader in delivering innovative communications and technology solutions that improve

the way its customers live, work, and play. The Verizon Performance Engineering Group (PEG) is responsible

for determining the configuration of servers and when to adopt new technology in the company’s world-

class datacenters. They’re a leader in implementing next-gen technology―and also in helping Intel by

providing invaluable feedback and direction to help applications to reach peak performance on the servers

on which they’re deployed.

Optimizing Application Performance with Powerful Profiling

VERIzOn MAXIMIzEs cusTOMER sATIsFAcTIOn
THROugH BETTER pERFORMAncE

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

44The Parallel Universe

Occasionally, PEG deals with code built on an older architecture that fails to capitalize on the latest

technology breakthroughs. Profiling can be a powerful tool to quickly determine if there’s potential to

optimize hardware resources. The challenge is choosing among numerous profilers and performance

analysis tools. An incorrect tool can waste time and offer no benefit to help interpret and publish the

data gathered by profiling.

Working with experts both inside and outside the company, the PEG team has been able to identify the

right profiling tools―which helps to improve the performance of key applications.

Solving Performance Problems
PEG is a team of both hardware and software engineers focused on solving performance problems for

the infrastructure of the company's various business groups and subsidiaries. The goal is to make sure

core workloads deliver optimum performance to produce the best user experiences for customers.

Business groups come to the PEG team when they have a problem with one of their workloads running

on one of its servers. The PEG team will analyze the issue and provide the best solution for them within

24 hours.

“Our business units have excellent developers on their teams,” explained PEG Principal Performance

Engineer Mourad Bouache. “Occasionally, they’ll come to us with latency issues on a core workload on

a new server deployment. While they should be getting X performance, they’re getting Y performance

instead. We can quickly run an analysis and find where their code has issues slowing performance (e.g.,

NUMA memory contention). With small fixes in their code, they can get to X performance.”

Pinpointing the Issues
To push the performance of C++, Java*, and Node.js* applications to the max, the team developed a

new methodology for performance analysis based on Intel® VTune™ Amplifier, a software tool from

Intel that’s available standalone and as part of the Intel® Parallel Studio XE and Intel® System Studio

tool suites.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/vtune
https://software.intel.com/en-us/parallel-studio-xe
https://software.intel.com/en-us/system-studio

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

45The Parallel Universe

Ensuring the best possible performance of systems for our users is a top priority for us. Intel VTune

Amplifier helps us do that with effective workload management. It gives us abstracted information with

ability to dive deeply with details such as hotspots, cache miss ratios, amount of concurrency, and lock

contention mapped to function, source code line, and assembly instruction. By identifying issues that

were otherwise overlooked, it allowed us to improve the performance of some of our crucial and revenue-

impacting applications. Our team helps save the company tens of millions of dollars by using features

like the Platform Profiler to manage performance issues on our servers and get useful insights into how

we can achieve the highest level of performance from our hardware. We understand that we’ll minimize

our total cost of ownership not only with our very talented PEG team, but also by using world-class

performance analysis tools like Intel VTune Amplifier.

Collaborating for the Future
The PEG team plans to continue collaborating with Intel to help ensure the tools meet our evolving

needs―a collaboration that’s valuable for both companies. “Intel looks to PEG as experts on improving

application performance and great collaborators in making software tools that are as effective as

possible,” explained Sanjiv Shah, Vice President of Intel Architecture, Graphics, and Software. “They

provide valuable feedback and help us define future enhancements to give both our customers and

theirs the best possible performance.”

Learn More
• Intel® VTune™ Amplifier

Read more >

Delivering “One Intel Developer Experience” Online
SCOTT HAY, INTEL CORPORATION

As Intel reaches out to the global software developer community, we aspire to deliver value
and opportunity through our world-class One Developer Experience (ODX). From an online
perspective, ODX means a single sign-on to our resources; a single taxonomy across our
programs; easy access to our content, tools, and trusted support; and a true sense of excitement
about what you can build, test, and deliver with the combination of Intel® hardware and software
and the valuable resources and experiences gained from Intel’s developer programs.

BLOg HIgHLIgHTs

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/vtune
https://software.intel.com/en-us/articles/delivering-one-intel-developer-experience-online

TEAcH yOuR
cODE TO BE
sMARTER

Download free Intel®
Performance Libraries

and start creating better,
more reliable, and faster

applications now.

FREE DOwnLOAD >

Software

For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.
Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
© Intel Corporation

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

47The Parallel Universe

Editorial by Henry A Gabb, Senior Principal Engineer, Intel CorporationVerizon

The July 2017 issue of The Parallel Universe ran an article on Julia*: A High-Level Language for
Supercomputing. My key takeaways from the article were that Julia has built-in primitives for multithreading

and distributed computing and is capable of extreme parallelism (scaling to thousands of cores). Despite

this, I still considered Julia something of a curiosity. As I noted in my editorial in that issue, Python* was my

productivity language of choice:

Flexible Parallelism in a Productivity Language

cOMpOsABLE THREADIng Is cOMIng TO JuLIA*

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/download/parallel-universe-magazine-issue-29-july-2017
https://software.intel.com/en-us/download/parallel-universe-magazine-issue-29-july-2017
https://software.intel.com/en-us/download/parallel-universe-magazine-issue-29-july-2017

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

48The Parallel Universe

“I recoded some of my time-consuming data wrangling applications from Python to Julia, maintaining a

line-for-line translation as much as possible. The performance gains were startling, especially because

these were not numerically-intensive applications, where Julia is known to shine. They were string

manipulation applications to prepare data sets for text mining. I’m not ready to forsake Python and its

vast ecosystem just yet, but Julia definitely has my attention.”

That was over two years ago, and Julia still has my attention because its ecosystem is growing rapidly

and it has the potential to solve the “two-language problem” in data science, in which a high-level

language like Python is used for data manipulation but low-level languages like Fortran or C/C++ are

used when performance is required.

As much as I like Python, I’m not impressed with its ability to exploit parallelism, which brings me to

the point of this brief commentary. Julia Computing announced last month that composable, general

task parallelism is coming to Julia. (It's available now for testing in the v1.3.0-alpha release.) This is in

addition to its already impressive parallel capabilities.

Julia’s task parallelism is similar in spirit to that of Threading Building Blocks. The programmer spawns

tasks freely and lets the scheduler sort out when and where they run. The programmer doesn’t have

to worry about available processors or threads because the scheduler makes sure that the system isn’t

oversubscribed. As the authors note, “The model is nestable and composable: you can start parallel

tasks that call library functions that themselves start parallel tasks, and everything works.” They

illustrate this principle with a straightforward merge sort implemented with task parallelism:

Shortcut to Efficient Parallel Programming
THREADIng BuILDIng BLOcKs FREE

DOwnLOAD

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://julialang.org/blog/2019/07/multithreading
https://julialang.org/downloads/
https://software.intel.com/en-us/tbb
https://registrationcenter.intel.com/en/forms/?productid=2558&licensetype=2
https://registrationcenter.intel.com/en/forms/?productid=2558&licensetype=2

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

49The Parallel Universe

As you can see, Julia's syntax is similar to other productivity languages, so the learning curve is low. The

psort function above is a standard merge sort with recursive spawning of threads (via the @spawn

construct). Depending on the length of v, there’s the potential to create many threads, but that’s the

Julia scheduler’s problem. The programmer just specifies where to spawn threads and where to wait for

them to finish.

I’ve only scratched the surface here, so have a look at their original blog post for more information

about the new threading constructs and “under the hood” implementation details.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://julialang.org/blog/2019/07/multithreading

Software

THE pARALLEL
unIVERsE

 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For
more complete information visit www.intel.com/benchmarks. Configuration: Refer to Detailed Workload Configuration Slides in this presentation. Performance results are based on
testing as of March 11th and March 25th 2019 and may not reflect all publicly available security updates. See configuration disclosures for details. No product can be absolutely secure.
*Other names and brands may be claimed as property of others.

 Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other
sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit www.intel.com/bench-
marks.

 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system
configuration.

 Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include
SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchi-
tecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by
this notice. Notice Revision #20110804

 Intel® Advanced Vector Extensions (Intel® AVX)* provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing AVX instructions
may cause a) some parts to operate at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Perfor-
mance varies depending on hardware, software, and system configuration and you can learn more at http://www.intel.com/go/turbo.

 Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data
are accurate.

 This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel repre-
sentative to obtain the latest forecast, schedule, specifications and roadmaps.

 The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are available
on request.

 Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.
 Copyright © 2019 Intel Corporation. All rights reserved. Intel, Xeon, Xeon Phi, VTune, OpenVINO, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

 * Other names and brands may be claimed as the property of others. Printed in USA 1019/SS Please Recycle

