
00001101
00001010
00001101
00001010
01001100
01101111
01110010
01100101
01101101
00100000
01101000
01110001
01110011
01110101

Issue

37
2019

Leadership Performance with
2nd-Generation Intel® Xeon®
Scalable Processors
Using the Latest Performance Analysis Tools to Prepare
for Intel® Optane™ DC Persistent Memory 		

Measuring the Impact of NUMA Migrations 				
on Performance	

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

2The Parallel UniverseCONTENTS
FE

AT
U

RE

Letter from the Editor 	 3
Black Holes and High-Performance Computing
by Henry A. Gabb, Senior Principal Engineer, Intel Corporation

Leadership Performance with 2nd-Generation Intel® Xeon® Scalable Processors	 5
New Features and Tools to Maximize Your HPC, AI, and Analytics Applications

Using the Latest Performance Analysis Tools to Prepare for 	 19	
Intel® Optane™ DC Persistent Memory	 	
Getting Past Bottlenecks and Storage Issues

Measuring the Impact of NUMA Migrations on Performance	 27 	
Weighing the Tradeoffs to Maximize Performance

Parallelism in Python: Directing Vectorization with NumExpr*	 35
Boosting Performance for Computing with Arrays and Numerical Expressions

Turbo-Charged Open Shading Language on Intel® Xeon® Processors 	 39	
with Intel® Advanced Vector Extensions 512	
Up to 2x Faster Full Renders Speed Digital Content Creation

The Performance Optimization and Productivity (PoP) Project	 53 	
Pursuing the Never-Ending Quest for Performance

Seven Ways HPC Software Developers Can Benefit from 	 59	
Intel® Software Investments	
Taking Another Look at Intel and HPC Software

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

3The Parallel Universe

Black Holes and High-Performance Computing

This was obviously an amazing scientific feat. But a single
image doesn’t convey the vast amount of expertise, data, and
computation that went into its creation. The Event Horizon
General Relativistic Magnetohydrodynamic Code Comparison
Project provides details about some of the codes involved,
including ECHO*. Advancing the Performance of Astrophysics
Simulations with ECHO-3DHPC* (published last year in issue
34 of The Parallel Universe) describes the optimization of this
code by researchers from the Leibniz Supercomputing Centre
in collaboration with Intel.

Our feature article in this issue, Leadership Performance with 2nd-Generation Intel®
Xeon® Scalable Processors, describes the newest addition to the Intel Xeon processor
family. This new processor includes Intel® Deep Learning Boost, support for Intel® Optane™
DC persistent memory, and up to 56 cores and 12 DDR4 memory channels per socket. After
reading this article, you’ll know why this new processor is setting new performance records.
Using the Latest Performance Analysis Tools to Prepare for Intel® Optane™ DC Persistent
Memory shows you how to determine if your application will benefit from this new memory
technology, and how to analyze applications that use this technology.

Non-uniform memory access (NUMA) architectures have been around for a long time. Most
of us know that threads should stay close to their data for faster memory access, but few of
us pay attention to where our threads are actually running or whether the operating system
is moving our threads around. Measuring the Impact of NUMA Migrations on Performance
helps you to understand how your threads are behaving on NUMA systems.

3The Parallel Universe

LETTER FROM THE EDITOR
Henry A. Gabb, Senior Principal Engineer at Intel Corporation, is a longtime high-performance and
parallel computing practitioner who has published numerous articles on parallel programming. He
was editor/coauthor of “Developing Multithreaded Applications: A Platform Consistent Approach”
and program manager of the Intel/Microsoft Universal Parallel Computing Research Centers.

Cr
ed

it:
 E

ve
nt

 H
or

izo
n

Te
le

sc
op

e
Co

lla
bo

ra
tio

n

It probably seems like a long time ago, but it’s just been three months since the
Event Horizon Telescope published its black hole image.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://arxiv.org/pdf/1904.04923.pdf
https://arxiv.org/pdf/1904.04923.pdf
https://arxiv.org/pdf/1904.04923.pdf
https://software.intel.com/en-us/download/parallel-universe-magazine-issue-34-october-2018
https://software.intel.com/en-us/download/parallel-universe-magazine-issue-34-october-2018
https://software.intel.com/en-us/download/parallel-universe-magazine-issue-34-october-2018
https://www.intel.com/content/www/us/en/products/processors/xeon.html
https://www.intel.com/content/www/us/en/products/processors/xeon.html
https://www.intel.com/content/www/us/en/products/processors/xeon.html
https://www.intel.ai/intel-deep-learning-boost/
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

4The Parallel Universe

Our series on optimizing and parallelizing Python* codes continues in this issue. Parallelism
in Python*: Directing Vectorization with NumExpr* shows how simple code modifications
can drastically improve the performance of complex mathematical expressions.

Turbo-Charged Open Shading Language* on Intel® Xeon® Processors with Intel®
Advanced Vector Extensions 512 describes Intel’s efforts to vectorize the Oscar*-winning
Open Shader Language*, the de facto open source standard for digital content creation that
has over 100 movie credits.

Finally, we close this issue with two guest editorials: one from Mike Croucher from Numerical
Algorithms Group and another from James Reinders, our editor emeritus. Mike describes
The Performance Optimisation and Productivity (POP) Project that the European
Union funds to improve software performance. In Seven Ways HPC Software Developers
Can Benefit from Intel® Software Investments, James describes how you can maximize
performance while minimizing effort by taking advantage of work that Intel has already done.
These editorials show that sometimes the path to performance is just a matter of knowing
what’s available.

As always, don’t forget to check out Tech.Decoded for more information on Intel's solutions
for code modernization, visual computing, data center and cloud computing, data science,
and systems and IoT development.

Henry A. Gabb
July 2019

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.nag.com/
https://www.nag.com/
https://techdecoded.intel.io/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

5The Parallel Universe

Amarpal S. Kapoor, Technical Consulting Engineer; Rama Kishan V. Malladi, Performance Modeling
Engineer; and Avinash Karani and Nitya Hariharan, Application Engineers; Intel Corporation

April 2019 saw the launch of the 2nd-generation Intel® Xeon® Scalable processor (formerly codenamed

Cascade Lake), a server-class processor. This new processor family has already set 95 performance

world records, earning performance leadership1. New features include Intel® Deep Learning Boost (Intel®

DL Boost) for AI deep learning inference acceleration and support for Intel® Optane™ DC (data center)

persistent memory. These processors will continue to deliver leadership performance with up to 56 cores

per CPU socket and 12 DDR4 memory channels per socket―making them ideal for a wide variety of

HPC, AI, and analytics applications with high-density infrastructures.

New Features and Tools to Maximize Your HPC, AI, and Analytics Applications

Leadership Performance with 2nd-Generation
Intel® Xeon® Scalable Processors

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable.html
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

6The Parallel Universe

The Intel Xeon Scalable processor is designed to address a range of compute needs and demands,

including more than 50 workload-optimized solutions and a variety of custom processors. The 8200

series offers up to 28 cores (56 threads), while the 9200 series has up to 56 cores (112 threads). Each

processor core has a 1MB dedicated L2 cache and a non-inclusive shared L3 cache of up to 38.5 MB.

On each socket, there are up to three Intel® Ultra Path Interconnect (Intel® UPI) links operating at 10.4

GT/s for cross-die (multi-socket) communication. The processor memory interface now supports up

to six channels (on the 8200 series) and 12 channels (on the 9200 series) of DDR4 memory, operating

at 2,933 MT/s. Also, the processor supports up to 4.5 TB of memory per socket using the Intel Optane

DC persistent memory modules. To help improve the performance of DL applications, Intel Xeon

Scalable processors have 512-bit VNNI (vector neural network instructions), which help in processing

up to 16 DP/32 SP/128 INT8 MAC (multiply accumulate) instructions per cycle per core. To address

some side-channel security issues, Intel Xeon Scalable processors implement hardware mitigations,

which have smaller overhead compared to software-based methods2. These processor features apply

in multiple computational domains, some of which we’ll discuss below.

We’ll also discuss working with Intel Optane DC persistent memory, Intel® AVX-512 Vector Neural

Network Instructions (VNNI) for faster DL inference, and relative performance gains achieved in HPC

applications on the Intel Xeon Scalable processor.

[Editor’s note: We discuss ways to determine how applications can best utilize this new memory in Using
the Latest Performance Analysis Tools to Prepare for Intel® Optane™ DC Persistent
Memory in this issue.]

Intel® Optane™ DC Persistent Memory
Intel Optane DC persistent memory is a new type of non-volatile, high-capacity memory with near-

DRAM latency, offering affordable, high-capacity data persistence. Figure 1 shows latency estimates

for different classes of memory and storage devices. Note the new tier that Intel Optane DC persistent

memory creates between SSD and conventional DRAM.

Intel Optane DC persistent memory is available in the same form factor as DRAM and is both

physically and electrically compatible with DDR4 interfaces and slots. Intel Xeon Scalable processor-

based machines must be populated with a combination of DRAM and Intel Optane DC persistent

memory. (It’s not possible to just have Intel Optane DC persistent memory on an Intel Xeon Scalable

processor-based machine, since DRAM is necessary to serve system activities.)

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

7The Parallel Universe

1 Latency estimates for different storage and memory devices

Intel Optane DC persistent memory can be used in two different modes (Figure 2):
•• Memory mode

•• App Direct mode

2 Modes of operation for Intel® Optane™ DC persistent memory

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

8The Parallel Universe

Memory Mode
This is the simplest mode for using Intel Optane DC persistent memory, since existing applications can

benefit without any source changes. In this mode, a new pool of volatile memory becomes visible to

the operating system and user applications. The DRAM acts as a cache for hot (frequently accessed)

data, while Intel Optane DC persistent memory provides a large volatile memory capacity. Memory

management is handled by the Intel Xeon Scalable processor memory controller. When data is requested

from memory, the memory controller first checks the DRAM cache. If data is found, the response latency is

identical to DRAM latency. If data isn't found in the DRAM cache, it’s read from Intel Optane DC persistent

memory, which has higher latency. Memory controller prediction mechanisms aid in delivering better

cache hit rates by fetching the required data in advance. However, workloads with random access patterns

over a wide address range may not benefit from the prediction mechanisms and would experience slightly

higher latencies compared to DRAM latency3.

App Direct Mode
For data to persist in memory, Intel Optane DC persistent memory should be configured for use in App

Direct mode. In this mode, the operating system and user applications become aware of both DRAM and

Intel Optane DC persistent memory as discrete memory pools. The programmer can allocate objects in

either of the memory pools. Data that needs to be fetched with the least latency must be allocated in

DRAM (this data will be inherently volatile). Large data, which might not fit in DRAM, or data that needs

to be persistent, must be allocated in Intel Optane DC persistent memory. These new memory allocation

possibilities are the reason behind the need for source code changes in App Direct mode. Interestingly,

in App Direct mode, it’s also possible to use Intel Optane DC persistent memory as a faster storage

alternative to conventional HDD/NVMe storage devices.

Configuration
Switching between Memory and App Direct modes requires changes in BIOS settings. ipmctl is an open

source utility available for configuring and managing Optane persistent memory modules (PMM)4. Here are

some useful management commands:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

9The Parallel Universe

Provisioning PMMs is a two-step process. First, you specify a goal and store it on the PMMs. Then the BIOS

reads it at the next reboot.

In the Mixed mode, a specified percentage of Intel Optane DC persistent memory can be used in memory

mode and the remaining memory can be used in App Direct mode. The command above will assign 60%

of available persistent memory in memory mode and 40% in App Direct mode. (For details, see references

4 and 5.)

Persistent Memory Development Kit (PMDK)
Applications can access persistent, memory-resident data structures in place, as they do with traditional

memory, eliminating the need to page blocks of data back and forth between memory and storage.

Getting this low-latency direct access requires a new software architecture that allows applications to

access ranges of persistent memory6. The Storage Network Industry Association (SNIA) Programming

Model comes to our rescue here, as shown in Figure 3.

PMDK is a collection of libraries and tools that system administrators and application developers can

use to simplify managing and accessing persistent memory devices. These libraries let applications

access persistent memory as memory-mapped files. Figure 3 shows the SNIA model, which describes

how applications can access persistent memory devices using traditional POSIX standard APIs such as

read, write, pread, and pwrite, or load/store operations such as memcpy when the data is memory-

mapped to the application. The Persistent Memory area represents the fastest possible access because

the application I/O bypasses existing filesystem page caches and goes directly to or from the persistent

memory media6.

PMDK contains the following libraries and utilities to address common programming requirements with

persistent memory systems:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

10The Parallel Universe

3 SNIA Programming Model6

PMDK Example
This section demonstrates the use of PMDK through the libpmemobj library, which provides a

transactional object store, providing memory allocation, transactions, and general facilities for persistent

memory programming. This example demonstrates two applications:

•• writer.c, which writes a string to persistent memory

•• reader.c, which reads that string from persistent memory

Code snippets with comments are shown in Table 1. The complete source for this example is available

in reference 7.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

11The Parallel Universe

writer.c reader.c

int main(int argc, char *argv[1]

{

PMEMobjpoo] *pop = pmemobj_create(argv[1],

 LAYOUT_NAME,

 PMEMOB]_MIN_POOL, 0666),

if (pop == NULL) {

 Perror("pmemobj_create");

 return 1;

}

...

...

pmemobj_close(pop);

return 0;

}

int main(int argc, char *argv[1]

{

PMEMobjpoo] *pop = pmemobj_open(argv[1],

 LAYOUT_NAME,

if (pop == NULL)

{

perror("pmemobj_open");

return 1;

}

...

...

pmemobj_close(pop);

return 0;

}

The pmemobj_create API function takes the usual parameters
you would expect for a function creating a file plus a layout,
which is a string of your choosing that identifies the pool.

In the reader, instead of creating a new pool, we open the pool
we have created in the writer code using the same layout.

PMEMoid root = pmemobj_root(pop, sizeof
(struct my_root));

struct my)root *rootp = pmemobj_
direct(root);

PMEMoid root = pmeobj_root(pop, sizeof
(structr my_root));

struct my_root *rootp = pmeobj_direct(root);

It is required to keep a known location for the application in the
memory pool, called the root object. It is the anchor to which
all the memory structures can be attached. In the above code,
we are creating a root object using pmemobj_root in the pop
memory pool. We are also translating the root object to a
usable, direct pointer using pmemobj_direct.

Since we already created the root object in the pool, pmeobj_root
returns the root object without initializing it with zeros. It will
contain whatever string the writer was tasked with storing.

char buf[MAX_BUT_LEN];

scanf("X9s", buf):

if (rootp->len == strlen(rootp->buf))

 printrf("%s\n", rootp->buf);

A maximum of 9 bytes are then read to the temporary
buffer.

The above section reads the string from persistent memory.

root->len = strlen(bvuf);

pmemmobj_persistr(pop, &rootrs->len,
sizeof

(rootrp->len));

pmemobvj_memcpy_persistr(pop, rootp-
>buf,

my_buf, rootp->len);

In the above section, we force any changes in the range
(&rootp->len &rootp->len+sizeof(rootp->len))to be stored durably in
persistent memory using pmeobj_persist and we copy the string
from local buffer to persistent memory using pmeobj_
memcopy_persist.

Table 1. Working with strings in persistent memory

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

12The Parallel Universe

Performance Gains from Intel Optane DC Persistent Memory
This section presents the performance gains achieved in enterprise applications like Aerospike*, Asiainfo’s

benchmark, and SAS VIYA* using Intel Optane DC persistent memory (Figure 4). Aerospike is a NoSQL*

key-value database application which saw a 135x reduction in restart times with the use of Intel Optane

4 Better performance in enterprise applications using Intel Optane DC persistent memory

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

13The Parallel Universe

DC persistent memory in App Direct mode. This helps Aerospike restart in seconds instead of hours,

allowing for more frequent software and security updates, while significantly reducing disruption. One of

Asiainfo’s benchmarks saw a 68% reduction in latency due to the combined effects of Intel Xeon Scalable

processors and Intel Optane DC persistent memory in App Direct mode. The performance gains were

attributed to the ability to store more data in memory with reduced spillover to slower SSDs. SAS VIYA* is a

unified, open analytics platform with AI capabilities deployed on the cloud. Using Intel Optane DC persistent

memory mode, larger datasets needed for gradient boosting models could be placed in memory, with little

or no performance degradation, at reduced costs. The performance gain was up to 18%.

Faster AI Inference with Intel® AVX-512 VNNI
Neural networks require several matrix manipulations, which may be realized using MAC instructions.

In the previous generation of Intel Xeon Scalable processors, multiplying two 8-bit (INT8) values and

accumulating the result to 32 bits required three instructions. In the latest generation of Intel Xeon

Scalable processors, this is done in one instruction8. This instruction count reduction represents a

performance gain, which is accomplished by having simultaneous execution of the MAC instructions on

both port 0 and 5 of the execution pipeline (Figure 5).

5 Intel® DL Boost technology

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

14The Parallel Universe

Currently, Intel® compilers support VNNI instructions through intrinsics and inline assembly only. For

users intending to leverage VNNI capabilities without using intrinsics or assembly, Intel® Math Kernel
Library for Deep Neural Networks (Intel® MKL-DNN)9 and BigDL10 are the recommended alternatives.

Intel MKL-DNN is a collection of highly optimized DL primitives for traditional HPC environments, while

BigDL (powered by Intel MKL-DNN) provides similar optimized DL capabilities for big data users in

Apache Spark*.

Caffe* 1.1.3 optimized with Intel MKL-DNN gives 14x better inference throughput on a dual-socket

Intel® Xeon® Platinum 8280 processor and 30x better inference throughput on a dual-socket Intel Xeon

Platinum 9282 processor, in comparison to the previous-generation Intel Xeon Scalable processors11.

A similar study with Intel Xeon Platinum 9282 processor for Caffe ResNet-50* demonstrated better

inference throughput than NVIDIA* GPUs (Figure 6)12. Other popular frameworks like Chainer*,

DeepBench*, PaddlePaddle*, and PyTorch* also use Intel MKL-DNN for better performance.

6 CPU-GPU inference throughput comparison for Caffe ResNet-50* (higher is better)

HPC Application Performance on Intel Xeon Scalable Processors
The increased core count and higher bandwidth available on Intel Xeon Scalable 8200 and 9200

processors provide substantial gain for HPC applications. Performance gains are shown for industry

standard benchmarks in Figure 7, and for real-world applications in Figure 8. LAMMPS* and GROMACS*

benefit from AVX-512, higher core count, and hyperthreading. The higher available bandwidth on Intel

Xeon Scalable processors shows a positive gain for memory bandwidth-bound codes like OpenFOAM*,

WRF*, and NEMO*.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://github.com/intel/mkl-dnn
https://github.com/intel/mkl-dnn
https://github.com/intel-analytics/BigDL

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

15The Parallel Universe

7 Relative performance of HPC industry standard benchmarks

8 Relative performance of HPC applications

OpenFOAM Disclaimer: This offering is not approved or endorsed by OpenCFD Limited, producer and distributor of the
OpenFOAM software via www.openfoam.com, and owner of the OPENFOAM® and OpenCFD® trademark.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
http://www.openfoam.com

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

16The Parallel Universe

Improving HPC, AI, and Analytics Application Performance
New hardware features in the latest Intel Xeon Scalable processors enable developers to improve

performance for a wide variety of HPC, AI, and analytics applications. Intel continues to innovate in

processor technologies. The upcoming Cooper Lake architecture will introduce bfloat16 for enhanced AI

training support. Also, Intel recently released 10th-generation Intel® Core™ processors on 10nm, delivering

better performance and density improvements.

 References
1.	Data-Centric Business Update Media Briefing
2.	Addressing Hardware Vulnerabilities
3.	Intel® Optane™ DC Persistent Memory Operating Modes Explained
4.	ipmctl for Intel Optane DC Persistent Memory
5.	Configure Intel® Optane™ DC Persistent Memory Modules on Linux*
6.	Persistent Memory Development Kit
7.	PMDK on GitHub
8.	Intel® Architecture Instruction Set
9.	Intel® Math Kernel Library for Deep Neural Networks (Intel® MKL-DNN)
10.	 BigDL: Distributed Deep Learning Library for Apache Spark*
11.	 2nd-Generation Intel® Xeon® Scalable Processors, Solutions
12.	 Intel® CPU Outperforms NVIDIA* GPU on ResNet-50 Deep Learning Inference

NEWS Highlights

Read more >

Intel’s ‘oneAPI’ Project Delivers Unified Programming Model Across
Diverse Architectures
INTEL CORPORATION

At Intel’s Software Technology Day in London, Intel engineering leaders provided an update
on Intel’s software project–“oneAPI”–to deliver a unified programming model to simplify
application development across diverse computing architectures.

“oneAPI is a project to deliver a set of developer tools that provide a unified programming
model that simplifies development for workloads across diverse architectures. As our breadth
of compute has grown to include specialized accelerators, Intel will deliver software solutions
that allow developers to get the full performance out of the hardware,” said Bill Savage, Intel
vice president and general manager of Compute Performance Developer Products.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/11/cascade-lake-advanced-performance-press-deck.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/facts-about-side-channel-analysis-and-intel-products.html
https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/#gs.f0madq
https://github.com/intel/ipmctl
https://software.intel.com/en-us/articles/quick-start-guide-configure-intel-optane-dc-persistent-memory-on-linux
https://docs.pmem.io/getting-started-guide/what-is-pmdk
https://github.com/pmem/pmdk/tree/master/src/examples/libpmemobj/string_store
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://github.com/intel/mkl-dnn
https://github.com/intel-analytics/BigDL
https://www.intel.ai/2ndgenxeonscalable/#_ftn1
https://software.intel.com/en-us/articles/intel-cpu-outperforms-nvidia-gpu-on-resnet-50-deep-learning-inference
https://newsroom.intel.com/news/intels-one-api-project-delivers-unified-programming-model-across-diverse-architectures/#gs.mpspiw

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

17The Parallel Universe

Appendix

Configuration: Single-Node Intel® Xeon® Generational HPC Performance
Intel® Xeon® 6148 processor: Intel Reference Platform with 2S 6148 Intel processors (2.4GHz,
20C), 12x16GB DDR4-2666, 1 SSD, Cluster File System: Panasas (124 TB storage) Firmware
v6.3.3.a & OPA based IEEL Lustre, BIOS: SE5C620.86B.00.01.0015.110720180833, Microcode:
0x200004d, Oracle Linux Server release 7.6 (compatible with RHEL 7.6) on a 7.5 kernel using
ksplice for security fixes, Kernel: 3.10.0-862.14.4.el7.crt1.x86_64, OFED stack: OFED OPA 10.8 on
RH7.5 with Lustre v2.10.4.

Intel® Xeon® Platinum 8260 processor: Intel Reference Platform with 2S 8260 Intel processors
(2.4GHz, 24C), 12x16GB DDR4-2933, 1 SSD, Cluster File System: Panasas (124 TB storage)
Firmware v6.3.3.a & OPA based IEEL Lustre, BIOS: SE5C620.86B.0D.01.0286.011120190816,
Microcode: 0x4000013, Oracle Linux Server release 7.6 (compatible with RHEL 7.6) on a 7.5
kernel using ksplice for security fixes, Kernel: 3.10.0-957.5.1.el7.crt1.x86_64, OFED stack: OFED
OPA 10.9 on Oracle Linux 7.6 (Compatible w/RHEL 7.6) w/Lustre v2.10.6.

Intel® Xeon® Platinum 9242 processor: Intel Reference Platform with 2S Intel Xeon 9242
processors (2.2GHz, 48C), 24x16GB DDR4-2933, 1 SSD, Cluster File System: 2.12.0-1 (server)
2.11.0-14.1 (client), BIOS: PLYXCRB1.86B.0572.D02.1901180818, Microcode: 0x4000017,
CentOS 7.6, Kernel: 3.10.0-957.5.1.el7.x86_64

Tool Highlights

Read more >

Intel® Advisor Performance Analysis Cookbook
INTEL CORPORATION

Learn how to optimize memory access patterns using loop interchange and cache
blocking with Intel® Advisor, which helps you identify memory bottlenecks and improve
performance.

This step-by-step cookbook shows you how to:
1.	 Establish a baseline
2.	 Perform a loop interchange
3.	 Examine memory trafc at each level of the memory hierarchy
4.	 Implement a cache-blocking strategy

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/advisor-cookbook-memory-access-patterns-optimization-via-loop-interchange-and-cache-blocking

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

18The Parallel Universe

Intel® Xeon® 6148/8260/9242 Processors

Application Workload Intel®
Compiler

Intel®
Software

CoSoftware

BIOS
Settings

STREAM
OMP 5.10

Triad 2019u2 HT=ON,
Turbo=OFF,
1 thread per
core

HPCG
2018u3

Binary included MKL	 2019u1 MPI 2019u1,
MKL 2019u1

HT=ON,
Turbo=OFF,
1 thread per
core

SPECrate2017
_ fp_base

Best published result as of June 20, 2019:
•	 6148
•	 8260
•	 9242

HPL 2.1 Binary included MKL 2019u1 MKL 2019,
MPI 2019u1

HT=ON,
Turbo=OFF,
2 threads
per core

WRF 3.9.1.1 conus-2.5km 2018u3 MPI 2018u3 HT=ON,
HT=ON, 1
threads per
core

GROMACS
2018.2

All workloads 2019u2 MKL 2019u2,
MPI 2019u2

HT=ON,
Turbo=OFF,
2 threads
per core

LAMMPS 12
Dec 2018

All workloads 2019u2 MPI 2019u2 HT=ON,
Turbo=ON,
2 threads
per core

OpenFOAM
6.0

42M_cell_motorbike 2019u1 MPI 2018u3 HT=ON,
Turbo=OFF,
1 thread per
core

NEMO v4.0 ORCA2_ICE_PISCES 2018u3 MPI 2018u3 HT=off,
TURBO=ON,
pure MPI
run

Intel® Math Kernel Library Free
DownloadFor Deep Neural Networks

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.spec.org/cpu2017/results/res2018q3/cpu2017-20180809-08277.html
https://www.spec.org/cpu2017/results/res2019q2/cpu2017-20190415-11906.html

https://www.spec.org/cpu2017/results/res2019q2/cpu2017-20190304-11127.html
https://github.com/intel/mkl-dnn
https://github.com/intel/mkl-dnn

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

19The Parallel Universe

Jackson Marusarz, Technical Consulting Engineer, and Kevin O’Leary, Senior Technical Consulting
Engineer, Intel Corporation

We have some good news and some bad news. First, the bad news: With the exponential growth in data

year after year, and advances in fields like data analytics and artificial intelligence, many applications are

becoming bottlenecked by the available system memory or fast storage on a platform. The good news:

Intel® Optane™ DC persistent memory has arrived.

This new technology introduces a nonvolatile memory/storage tier that's faster than SSDs or hard

drives, with latencies near DRAM and much larger capacity. It has implications for any workloads that are

currently bound by memory capacity or the slow speeds of storage devices.

Getting Past Bottlenecks and Storage Issues

Using the Latest Performance Analysis Tools to
Prepare for Intel® Optane™ DC Persistent Memory

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

20The Parallel Universe

Figure 1 shows how Intel Optane DC persistent memory slots into the memory hierarchy of current

platforms. This article will help you understand how you can use Intel® tools to profile your existing

workloads and evaluate how they can benefit from this new hardware.

1 The new memory hierarchy

Intel Optane DC persistent memory can be configured in two different modes:

1.	Memory Mode
2.	App Direct Mode

In Memory Mode, Intel Optane DC persistent memory extends the system memory available to

the operating system. DRAM is used as a cache for Intel Optane DC persistent memory, and all the

memory management is transparent to the user. No code modifications are required.

In App Direct Mode, users manually allocate objects on Intel Optane DC persistent memory via APIs

and can also use the memory as traditional storage. This mode enables the non-volatile (persistent)

capabilities of the technology.

To determine how your workloads can benefit from Intel Optane DC persistent memory, and which

mode to choose, it’s important to characterize the behavior and understand specific performance

metrics. Intel has tools to help with this process.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

21The Parallel Universe

Measure the Memory Footprint of the Application
If you’re planning to use Intel Optane DC persistent memory as additional system memory―in either

mode―the first metric to understand is the memory footprint of your workload. There are many tools

that can measure memory consumption, including Intel® VTune™ Amplifier. The Memory Consumption
analysis in Intel VTune Amplifier will monitor the allocations and deallocations of an application and track

the memory consumption over time (Figure 2).

2 Memory Consumption report

The timeline in the Bottom-Up view of the Memory Consumption report can be used to identify the high-

water mark of memory usage for the workload. Also, the Platform Profiler feature in Intel VTune Amplifier

can track memory consumption using OS statistics and provide a timeline as a percentage of available

memory (Figure 3).

To improve performance with Intel Optane DC persistent memory, the application should benefit from

more physical memory. This means the memory consumption should be close to the total amount of DRAM

available on the system. Since physical memory is a finite resource, you need to consider that the operating

system and other processes also consume memory. If the memory footprint, plus the expected usage of

these other memory consumers, is near the available DRAM size, it ensures the application can use the Intel

Optane DC persistent memory because it can’t fit all of its data in DRAM. If available memory isn’t the limiting

factor for your workload, then adding more memory probably isn’t going to improve performance.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/vtune
https://software.intel.com/en-us/vtune-amplifier-help-memory-consumption-analysis
https://software.intel.com/en-us/vtune-amplifier-help-memory-consumption-analysis
https://software.intel.com/en-us/vtune-amplifier-help-platform-profiler-analysis

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

22The Parallel Universe

3 Platform Profiler Memory Utilization analysis

Identify the Hot Working Set Size
If you determine that your workload is consuming most of the available memory, then you may have a good

candidate for Intel Optane DC persistent memory.

The next step is to determine how your application might behave in each mode, Memory or App Direct.

The key metric for this step is the hot working set size. The hot working set is made up of the set objects

frequently accessed by your application. And the hot working set size is the sum of the sizes of these

objects. This metric isn’t as straightforward to calculate as the footprint, since the line of what is frequently

and infrequently accessed isn't always clearly defined. However, the Memory Access Analysis in Intel VTune

Amplifier, with the knob to analyze dynamic memory objects enabled, can help.

After running a Memory Access analysis, the Bottom-Up view in the GUI will display a grid that lists each

memory object that was allocated by the application, its size in parentheses, and the number of loads and

stores that accessed it (Figure 4). Identify the objects with the most loads and stores. Sum up the sizes (the

values in parentheses) of these objects to get the hot working set size.

The size of your hot working set is important for determining how your application will behave in each of the

memory modes.

Considerations for Choosing a Memory Configuration and Mode
The important concept to remember when you’re thinking about persistent memory performance is that you

still want the majority of memory accesses to come from DRAM. The persistent memory acts as additional

memory that can be used when DRAM isn’t available.

Based on that concept, Memory Mode could be a good solution for applications whose hot working set fits

into DRAM (i.e., the hot working set size calculated in the last step should be smaller than the available DRAM

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

23The Parallel Universe

on the system). This will ensure that the working set will routinely be cached in DRAM and, as long as

the memory footprint is smaller than the available persistent memory, the remaining data will sit in Intel

Optane DC persistent memory instead of out on disk.

4 Memory Access Analysis report with Dynamic Memory Object Analysis

If the hot working set size is much larger than the available DRAM, it’s a good indication that persistent

memory in App Direct mode could be a better solution than Memory mode. App Direct mode requires

the user to explicitly define which objects should be allocated in DRAM and which should be allocated in

Intel Optane DC persistent memory. It’s important to make educated choices, since allocating incorrectly

could hurt application performance. A good starting heuristic for choosing where to allocate objects

is identifying the objects with the most last-level core cache (LLC) misses and allocating as many as

possible into the available DRAM. The Memory Access analysis in Intel VTune Amplifier (Figure 4) has this

information. This ensures they will have lower access latency compared to the latency of Intel Optane

DC persistent memory. As for the remaining objects that have fewer LLC misses or are too large to put in

DRAM, allocate them in Intel Optane DC persistent memory.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

24The Parallel Universe

One additional consideration for allocation is the load/store ratio for object accesses. Intel Optane DC

persistent memory loads are generally much faster than stores. Identify objects with high load/store ratios

(load-heavy objects) and allocate them in persistent memory. Allocate the store-heavy objects in DRAM.

The load and store counts can also be found with the Memory Access analysis.

Using Intel Optane DC Persistent Memory for Non-Volatile Storage
The uses for Intel Optane DC persistent memory as non-volatile storage are fairly straightforward. If your

application has any performance issues related to reading and writing to disk, this new technology could

give you a boost. Many developers are already aware of disks being their bottleneck. If this is you, then

you’re one step ahead. If you aren’t sure whether storage is causing performance issues, there are features

in Intel® tools to help. For instance, the Input and Output Analysis in Intel VTune Amplifier helps diagnose

CPU stalls correlated with disk accesses (Figure 5).

5 Intel VTune Amplifier Input and Output analysis

Also, the Platform Profiler analysis in Intel VTune Amplifier displays disk statistics that can be correlated

with CPU performance (Figure 6).

Use these metrics to identify performance bottlenecks from storage accesses. If this is causing a significant

performance issue, using Intel Optane DC persistent memory as fast and persistent storage could increase

performance. The persistent memory can be configured as part of the filesystem, and you can put your

most accessed files directly on the memory modules.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/vtune-amplifier-help-disk-input-and-output-analysis

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

25The Parallel Universe

6 Platform Profiler metrics for CPU utilization and disk usage

Verifying the Correctness of Persistent Memory Applications
Besides identifying performance issues, there are also some software challenges to programming

persistent memory applications. One challenge is that a store to persistent memory is not actually

persistent until after it’s out of the cache hierarchy and visible to the memory subsystem. Intel® Inspector

Persistence Inspector is a new runtime tool developers can use to detect potential errors (Figure 7). In

addition to cache flush misses, this tool detects:

•• Redundant cache flushes and memory fences

•• Out-of-order persistent memory stores

•• Incorrect undo logging for the Persistent Memory Development Kit (PMDK)

Intel® VTUNE™ Amplifier
Find Performance Bottlenecks Fast

Free
Download

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/inspector
https://software.intel.com/en-us/vtune/choose-download#standalone
https://software.intel.com/en-us/vtune/choose-download#standalone

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

26The Parallel Universe

7 Intel® Inspector Persistence Inspector

Getting Past Bottlenecks and Storage Issues
We’ve just scratched the surface of the possibilities this new technology enables. If you’ve been struggling

with the rise of big data and have performance issues related to limited system memory or fast storage,

Intel Optane DC persistent memory is here to help. Intel also has tools like Intel VTune Amplifier and Intel

Inspector to help you understand how your workloads may be limited by these issues and how you can

take advantage of persistent memory.

To learn more, check out the Intel Optane DC persistent memory webpage and the software tools

landing page.

Free
Download

Intel® ADVISOR
Optimize Code for Modern Hardware

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://software.intel.com/en-us/persistent-memory
https://software.intel.com/advisor/choose-download#advisor
https://software.intel.com/advisor/choose-download#advisor

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

27The Parallel Universe

Gurbinder Gill, Graduate Research Assistant, University of Texas at Austin, and Ramesh V. Peri,
Senior Principal Engineer, Intel Corporation

These days, memory systems use non-uniform memory access (NUMA) architectures, where cores and

the total DRAM are divided among sockets. Each core can access the whole memory as a single address

space. However, accessing the memory local to its local socket is faster than the remote socket―hence

the non-uniform memory access. Because of the different access latency, access to the local socket

memory should always be preferred.

To achieve this, the Linux* kernel does NUMA migrations, which try to move memory pages to the

sockets where the data is being accessed. Linux maintains bookkeeping information―such as the

number of memory accesses to the pages from a given socket and latency of accesses―to make

Weighing the Tradeoffs to Maximize Performance

Measuring the Impact of NUMA Migrations
on Performance

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

28The Parallel Universe

decisions regarding page migration. NUMA migrations in Linux are enabled by default unless an OS-

level NUMA allocation policy is specified using utilities such as numactl.

NUMA page migrations can be very useful in scenarios where multiple applications are running on a

single machine, each with its own memory allocation. In such a multi-application scenario, where the

system is being shared, it makes sense to move memory pages belonging to a particular application

closer to the cores assigned to that application.

In this article, we’ll argue that if a single application is using the entire machine―which is the

most common scenario for high-performance applications―NUMA migrations can actually hurt

performance. Also, using application-level NUMA allocation policies is often preferred over OS-

level utilities such as numactl because they give finer control over the allocation of different data

structures and design allocation policies.

We’ll look at two application-level NUMA allocation polices (Figure 1):

•• NUMA interleave, in which memory pages are equally distributed among NUMA sockets in round-robin
fashion (similar to the numactl -interleave all command).

•• NUMA blocked, in which equal chunks of the allocated memory are divided among NUMA sockets.

1 NUMA allocation policies (color-coded for two processors)

Evaluation on Intel® Xeon® Gold Processors
We’ll evaluate the efficacy of NUMA migrations using a simple microbenchmark that allocates m

amount of memory (using both NUMA interleaved and blocked policies) and writes to each location

once using t threads such that each thread gets a contiguous block to write sequentially.

The pseudocode code memory allocation policies and simple computation are shown in Figure 2 and

Figure 3, respectively. The experiments are conducted on a four-socket system with Intel® Xeon® Gold

5120 processors (56 cores with a clock rate of 2.2 GHz and 187GB of DDR4 DRAM). Hyperthreading

was disabled during our evaluation.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

29The Parallel Universe

2 Pseudocode showing the memory allocation policies: NUMA Interleaved and NUMA Blocked

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

30The Parallel Universe

Effect of NUMA Migration for Different NUMA Allocation Policies
Figure 4 shows the time of the microbenchmark using t = 56 threads and interleaved allocation as

memory allocation size (m) increases (Figure 1). Doubling the workload doubles the execution time, which

is expected. However, the number of pages migrated during execution also increases significantly. We

observe a similar pattern for NUMA blocked allocation (Figure 5). However, blocked allocation gives better

performance because no page migration is required up to a workload size of 40GB. The memory pages

are allocated and accessed locally during the computation.

3 Pseudocode showing the simple microbenchmark computation used in this study

4 Microbenchmark using 56 threads and NUMA interleaved allocation with increasing
workload size. The number on the bars shows how many memory pages migrated
(in thousands).

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

31The Parallel Universe

Effect of NUMA Migration on a Single Socket
Figure 6 shows the total time taken with a 160GB workload using different numbers of threads on a

single socket, as well as the time spent in user code and kernel code. Since the total memory is equally

divided among sockets, each socket will have approximately 47GB of memory (187GB divided among

four sockets). We allocated 160GB across all four sockets. The microbenchmark scales with the number of

threads for both allocation policies. Increasing the number of threads decreased execution time, which in

turn reduces the number of pages migrated because the longer an application runs, the more pages will

be migrated by the OS kernel.

The red part of the stacked plots shows the time spent in the kernel code to migrate pages. This is

reduced to almost zero when NUMA migration is disabled. The geomean speedup gained by turning off

NUMA migrations is 2.4x for interleave and 1.6x for blocked, which shows that NUMA migration has a

significant impact on performance.

5 Microbenchmark using 56 threads and NUMA blocked allocation with increasing
workload size. The number on the bars shows how many memory pages migrated
(in thousands).

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

32The Parallel Universe

The Effect of NUMA Migration across Multiple Sockets
A pattern similar to a single socket (Figure 6) is also observed as we go beyond one socket (Figure 7). Each

chart shows the performance with and without NUMA migration as the number of sockets increases. All the

cores on the sockets are used. Note that the time spent in the kernel is always reduced when NUMA migration

is disabled. Another interesting thing to note is that the time spent in the user code increases slightly when

NUMA migration is disabled, indicating that NUMA migrations reduce memory access latency. However, the

overhead of NUMA migrations can outweigh the benefits and end up hurting overall performance.

6 Microbenchmark with fixed workload size (160GB) using a different number of
threads on a single socket. The number of threads is shown at the top, with the
number of sockets in parentheses. The number on the bars shows how many
memory pages migrated (in millions).

7 Microbenchmark with fixed workload size (160GB) using a different number of threads on
different sockets. The number of threads is shown at the top, with the number of sockets in
parentheses. The number on the bars shows how many memory pages migrated (in millions).

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

33The Parallel Universe

Maximizing Performance
From our results, we can conclude that OS-level features such as NUMA migrations must be used with

caution because they can have significant performance overhead, especially for single applications

running on the entire machine, the most common scenario for high-performance computations.

The effect of NUMA migrations on the runtime of an application depends on various factors such as:

•• Type of NUMA allocation policies used

•• Number of sockets used on the processor

To avoid the performance noise introduced by NUMA page migrations, ensure that such OS-level features

are turned off (NUMA migrations are on by default) as shown in Figure 8:

8 Turning off OS-level features

References
1.	 Linux numactl utility
2.	 David Ott, “Optimizing Applications for NUMA,” Intel Corporation, 2011.

NEWS Highlights

Read more >

Embedded Vision Alliance Announces 2019 Vision Product of the
Year Award Winners
BEST DEVELOPER TOOL: Intel® Distribution of OpenVINO™ Toolkit

The Embedded Vision Alliance announced the 2019 winners of the Vision Product of the Year
Awards at this year's Embedded Vision Summit. The awards recognize the innovation and
excellence of the industry's leading technology companies that are enabling visual AI and
computer vision in this rapidly growing field.

"Technologies enabling visual AI today are in high demand across many diverse and growing
markets. As a result, we are seeing a dramatic acceleration in innovation in this space," said
Jeff Bier, Founder of the Embedded Vision Alliance. "The Vision Product of the Year Awards
recognize the companies that are providing impactful, innovative technologies....

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://linux.die.net/man/8/numactl
https://software.intel.com/en-us/articles/optimizing-applications-for-numa
https://www.embedded-vision.com/industry-analysis/press-releases/embedded-vision-alliance-announces-2019-vision-product-year-award-w

Code your
Vision

Accelerate your AI from edge to cloud.
Intel® Distribution of OpenVINO™ toolkit
speeds up computer vision workloads,

streamlines deep learning deployments,
and enables easy heterogeneous
execution across Intel® platforms.

FreE Download >

Software

For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.
Intel, the Intel logo, and OpenVINO are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
© Intel Corporation

https://software.intel.com/en-us/openvino-toolkit

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

35The Parallel Universe

Fabio Baruffa, PhD, Technical Consulting Engineer, Intel Corporation

Python* has several pathways to vectorization (i.e., instruction-level parallelism), ranging from just-in-

time (JIT) compilation with Numba*1 to C-like code with Cython*. One interesting way of achieving Python

parallelism is through NumExpr*, in which a symbolic evaluator transforms numerical Python expressions into

high-performance, vectorized code. NumExpr achieves this by vectorizing in chunks of elements instead of

compiling everything at once—thus creating accelerated object kernels that are usable from Python code. In

this article, we’ll explore how to refactor Python code to take advantage of NumExpr’s capabilities.

Boosting Performance for Computing with Arrays and Numerical Expressions

Parallelism in Python*: Directing
Vectorization with NumExpr*

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

36The Parallel Universe

Parallelization of Numerical Expressions
The flexibility of Python, with its easy syntax, allows developers to rapidly prototype numerical

computations with the help of libraries like NumPy* and SciPy*. But the Python language wasn’t

developed with parallelism in mind―although it’s a key requirement to get performance out of

modern vector and multicore processors. So how is it possible to vectorize numerical expressions

using Python?

A numerical expression is a mathematical statement that involves numbers and mathematical

symbols to perform a calculation (e.g., 11*a-42*b). In Python, this expression can also operate

on arrays a and b defined from the NumExpr package. In this case, similar expressions working on

arrays are accelerated, making use of intrinsic parallelism and vectorization, compared to the same

calculation in standard Python.

To boost performance, NumExpr can use the optimized Intel® Vector Mathematical Function Library

(Intel® VML), included in Intel® Math Kernel Library (Intel® MKL). This makes it possible to accelerate

the evaluation of mathematical functions (e.g., sine, exponential, or square root) that operate on

vectors stored contiguously in memory.

Refactoring Common NumPy Calls for NumExpr
To make use of the NumExpr package, you only need to pass the computational string to the

evaluate function. Then it’s compiled into an object, leaving the entire computation at low-level

code before completion. After that, the result is returned to the Python layer, avoiding too many calls

to the Python interpreter.

Let’s look at an example where we compute a simple expression for NumPy arrays:

In this case, we have a 4x speedup due to the intrinsic vectorization enabled by Intel VML. The library can

also perform in-place operations, where the copying overhead is negligible.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/mkl

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

37The Parallel Universe

Now let’s evaluate the speedup from NumExpr when we use a mathematical function, where the benefit of

Intel VML becomes more evident:

In this case, we achieve higher performance due to the optimize sqrt function in Intel MKL. The speedup

is close to 19x. This indicates that the NumPy library doesn’t provide the acceleration we expect for some

expressions. Also, the NumExpr implementation circumvents memory allocations for intermediate results,

which gives better cache utilization and reduces memory overhead. We can really see the benefit of these

optimizations in computations with large arrays.

Controlling the NumExpr Evaluator

Since NumExpr uses the Intel VML library internally, it computes the mathematical functions only

for the types the library allows. It also operates on real and complex vector arguments with unit

increment, integer, and Boolean. In cases where the types of arrays don’t match in the evaluate

expression, they're cast according to the usual inference rules.

The performance depends on a number of factors, including vectorization and memory overhead.

For this reason, you can use some of Intel VML’s functions to tune performance and control

numerical accuracy (and eventually the number of threads).

To get information about the Intel VML library version, you can call the function get_vml_version(),

which might be useful for checking the installation. All the vector functions support the following

accuracy modes through the function set_vml_accuracy_mode(mode). The mode can be set to:

•• High, equivalent to High Accuracy (HA), the default mode.

•• Low, equivalent to Low Accuracy (LA), which improves performance by reducing accuracy of the two
least significant bits.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

38The Parallel Universe

•• Fast, equivalent to Enhanced Performance (EP), which provides better performance at the cost of
significantly reduced accuracy. Approximately half of the bits in the mantissa are correct.

For more information, see the Intel MKL Developer Reference2 and the official documentation of

NumExpr.3

NumExpr can also be used to control the number of threads. The function set_num_threads(nthreads)

sets the maximum number of threads to be used by Intel VML operations. The return value is the previous

setting of the number of threads in the current environment. Let’s modify the previous example to use

threads to improve performance even further:

The speedup is 3.7x, with 93% parallel efficiency. In this example, more threads equal better performance.

Using NumExpr as alternative to NumPy can give significant performance benefits for computing with

arrays and numerical expressions, thanks to the Intel VML performance library. The syntax is very similar

to NumPy and, with a couple of easy function calls, you can transition your code to NumExpr.

References
1.	 The Parallel Universe, issue 36
2.	Developer Reference for Intel® Math Kernel Library
3.	NumExpr 2.0 User Guide

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/download/parallel-universe-magazine-issue-36-april-2019
https://software.intel.com/en-us/mkl-developer-reference-c-vector-mathematical-functions
https://numexpr.readthedocs.io/projects/NumExpr3/en/latest/user_guide.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

39The Parallel Universe

Steena Monteiro, Software Engineer, and Alex M. Wells, Principal Engineer, Intel Corporation

Oscar*-winning Open Shading Language* (OSL*)1 is the de facto open-source standard for digital content

creation. OSL has been adopted industry-wide, used in renderers such as Pixar’s RenderMan* and Sony

ImageWorks’ Arnold*, and in more than 100 movies.2

Intel has been leading the rearchitecture of OSL to add single instruction multiple data (SIMD) to leverage

Intel® Advanced Vector Extensions 512 (Intel® AVX-512) in modern Intel® processors. SIMD OSL uses single

program multiple data (SPMD) with existing OSL shaders and OpenMP* explicit vectorization of OSL library

functions. This effort can be broadly summarized in two steps:

Up to 2x Faster Full Renders Speed Digital Content Creation

Turbo-Charged Open Shading Language* on Intel® Xeon®
Processors with Intel® Advanced Vector Extensions 512

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

40The Parallel Universe

1.	Introducing vector LLVM IR generation for just-in-time (JIT) compilation during render time optimization

2.	Adding a batched interface to the OSL runtime

Since its start at SIGGRAPH 2016, SIMD OSL has been improved to natively support AVX*, AVX2*,

and AVX-512* and include enhanced library features, debugging support, and an extensive test

framework. SIMD OSL enables parallel execution of an entire shading network on Intel SIMD

hardware.4 It dynamically schedules concurrent operations over 8 or 16 data points in a single CPU

instruction based on the CPU capabilities. According to Pixar, the company’s RenderMan 22.5 now

contains “SIMD hardware-accelerated OSL–up to 2x faster full renders, and 15% average speedups

using Intel® Xeon® Scalable processors with Intel Advanced Vector Extensions.”3,5

This article explores Intel’s efforts in leading the rearchitecture of OSL to leverage the power of Intel

AVX-512 on Intel SIMD hardware. We specifically discuss software engineering techniques used in

SIMD OSL including strategic memory layout for OSL datatypes, masking for divergent control flows,

and addition of an LLVM backend for vector code generation.

Shading and Its Role in Rendering Software
Shading in physically-based renderers implies providing surface description for objects in a 3D

scene. Surface descriptions include color values, lighting values (specular, diffused, spot), and

textures such as metal, ceramic, and marble (Figure 1). Shading in large scenes is done using several

individual shader nodes, where each node represents a specific shading behavior. Individual shaders

can be connected through directed acyclic graphs to procedurally create complex shading effects.

Production shaders can grow to several hundreds and thousands of shaders, representing a multitude

of shading behaviors. Renderers in production can spend up to 80% of their time shading via OSL.

Due to the complexity of shading networks, shading in a render consumes millions of CPU-hours on

render farms, both on-site and in the cloud.

1 Example of lighting and texture

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

41The Parallel Universe

Shaders in shading networks can be written in C++. However, using C++ presents a host of challenges.

These C++ shaders lack relevant shading information such as values of input parameters and geometry

of the scene being shaded at compile time. The shaders don’t know the mode of shading required and

remain oblivious about the state of the surrounding shading network. Writing, maintaining, and optimizing

performance of shaders written in C++ is challenging―primarily, because these shaders lack portability

and necessitate tests with complex and nested control flows (branchy testing). Artists who design shading

networks need extreme expertise in optimizing C++ to achieve high performance.

OSL, designed by Sony Pictures Imageworks6, makes writing performance-compliant shading networks a

little easier. Structured in C style, OSL is a domain-specific language designed for writing shaders. Designed

primarily for physically-based rendering, OSL is restricted to shading and doesn’t include raytracing,

sampling, integrations, and tight loops (which reside in the renderer). Under the hood, OSL maximizes

performance by JIT-ing machine code with extensive runtime optimization and yields shading networks

with lazy evaluations.

Open Shading Language
Shaders in OSL are programs with inputs and outputs that perform a specific task when rendering a

scene6. Figure 2 shows a simple OSL shader representing a marble texture.7 The important elements in

this shader are the shader global P and the OSL library functions abs() and noise(). Shader globals are

variables such as position, surface normals, and ray directions, provided by a renderer, that are consumed

by the shader.

2 A shader written in OSL (marble.osl7)

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

42The Parallel Universe

Benefit of OSL Shaders Over C++ Shaders
Shaders written in OSL are compiled by the OSLC (OSL compiler) into intermediate oso files that contain a

mix of operands and instructions representing shader operations. Multiple shaders are compiled to build

a large shading network. The OSL runtime employs LLVM to generate an intermediate representation (IR)

of the shader, optimize it, and finally produce optimized x86 code, as demonstrated in Figure 3. Because

of render time optimization, production scenes have benefitted from an orders-of-magnitude reduction in

the number of operations, symbols, and empty shader instances. Scenes have demonstrated a:

•• 99% reduction in operations (from 280 million to 2.68 million operations)

•• 98.8% reduction in symbols (from 161 million to 1.9 million symbols)

•• 63% optimization by eliminating empty shader instances8

Because of its ability to leverage LLVM and JIT for render-time optimization, OSL can outperform

precompiled C++ shaders.

3 OSL framework from OSL shaders to optimized x86 code

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

43The Parallel Universe

Introducing SIMD OSL
Even with all its advantages over C++ shaders, OSL in its original form lacks opportunities to leverage

newer Intel SIMD instructions. Its block vectorization from using Intel® Streaming SIMD Extensions

(Intel® SSE) uses only four lanes and offers limited support for complex noise, math, string, and texturing

functions, among others. SIMD OSL uses the SPMD model to create a batched interface (process multiple

points in the shading network) to the renderer. Features of SIMD OSL include:

•• Retaining OSL language specifications: SIMD OSL does not change the way users interface with the
OSL library (i.e., the original OSL shaders remain unchanged).

•• A new batched interface enables the renderer to process batches of points from the shading network.
Even so, it retains the original single-point interface, where a single point from a shading network is
processed by the renderer.

•• Generating SIMD code via a wide backend: SIMD OSL uses LLVM* vector data types <16 * float>
for datatypes in vectorized intermediate representation (IR).

•• A new wide library: Through its rearchitecture, SIMD OSL provides a wide interface to OSL functions
(function families such as math, noise, etc.) using OpenMP-explicit vectorization.

•• Creating a comprehensive test framework to test OSL library functions over combinations of uniform,
varying, and constant operands.

Architecture of SIMD OSL
The rearchitecture of SIMD OSL introduces three major structural changes in existing single-point OSL

•• Providing a batched interface (Figure 4)

•• Adding wide accessors to represent and access varying data types

•• Handling divergence among values across different SIMD lanes

Batched Interface in SIMD OSL
One of the changes in SIMD OSL is storing shader globals differently in the batched subsystem, depending

on whether they are uniform or varying. The ability to use batches of points means the renderer can

submit sets of points to the shading system, and the shading system can, in turn, query a set of results

from the queue of varying globals in the renderer. For a renderer to be able to use SIMD OSL, it’s important

that it support the new wide interfaces while also accommodating for wide callbacks.

Datatypes in SIMD OSL
All variables are considered uniform unless they can be proven to be varying. A varying variable is one

whose dependence can be traced to shader globals, which are known to be varying. For instance, shade

globals like surface position, incident ray, and surface normal are always varying.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

44The Parallel Universe

4 Batched interface in SIMD OSL

OSL contains a few aggregate datatypes―such as vector, color, point, and matrix―that are tuples. When

used in arrays, data is stored in an array of structures (AOS) format. The overhead of looping through

AOS values for storing into vector registers hinders vectorization. The Intel SIMD data layout template

(SDLT)9 uses containers with SIMD-friendly internal memory layout. Traditionally, datatypes of this form

are represented as arrays of values in memory. SDLT containers provider accessor objects to import and

export primitive datatypes between underlying memory layout and the original representation of the

object.⁹ Inspired by the SDLT library, the SIMD OSL Library provides wide accessors to support varying

datatypes and callbacks through the renderer. Wide accessors resemble arrays of the datatype across

each SIMD lane (Figure 5) and abstract the underlying structure of arrays (SOA) layout. Under the hood,

masked accessors will skip inactive data lanes via a mask.

Masking Algorithm in SIMD OSL to Track Nested Control Flows
SIMD OSL uses a masking strategy to keep track of lanes that diverge at an if-condition. A mask tracks

points that will execute on either path. Both code paths are then executed with the mask activated for

each appropriate lane in each branch. However, this technique becomes complicated with nested control

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

45The Parallel Universe

flows, because performance would be bottlenecked by tracking points and their masks across various

lanes along different code paths. To overcome this and still track the right points executing on the right

control flow path, SIMD OSL uses a stack to keep track of masks at each conditional statement (Figure 6).

5 Accessing varying data in SIMD OSL

SIMD OSL’s LLVM Backend
SIMD OSL uses LLVM to JIT target-specific code. For precompiled library functions, SIMD OSL generates

different shared libraries for each supported platform—AVX, AVX2, and AVX-512. The appropriate library

is loaded at run time to link addresses of each OSL precompiled library function with the JIT code.

OSL, in its original form, contains an LLVM backend to support all families of functions. Intel rearchitected

this backend to support our wide datatypes and masking controls when dealing with varying operands

and control flows. In OSL’s andor function, we use a four-step process to add SIMD support:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

46The Parallel Universe

6 Stack of masks to track divergence in control flow in SIMD OSL

1.	Check if the operand and result are uniform

2.	Load operand values while accommodating for their type (uniform or varying)

3.	Emit IR to either perform the operation or to call the appropriate precompiled library function

4.	Widen result prior to storage if the result is varying

Because the andor function is simple, with only one operand that’s required to be uniform, its support

in the SIMD LLVM backend is uncomplicated. However, functions such as texture3d(), which contain

multiple operands, require more complex LLVM backend support. The texture3d() function performs

a 3D lookup of a volume texture, indexed by 3D coordinate p.6 When we call texture3d(), the function

expects a set of options, some of which are varying (blur, width, and the texture coordinate p), while

some are expected to only be uniform (e.g., wrap). We first scan for lanes with the same argument settings

so that they can execute together. The remaining lanes that don’t match are turned off. The control flow is

described in Figure 7.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

47The Parallel Universe

7 LLVM lane masking and filtering in texture3d() in SIMD OSL

LLVM in SIMD OSL Loops and Control Flow
In OSL library functions, we can detect active lanes and implement a body of function calls in different

ways, depending on lane utilization. For instance, in the Perlin* noise function (described below in greater

detail), we use the default block vectorized Perlin noise implementation when the number of active lanes

is less than four. We can also process each lane individually and vectorize it. In summary, leveraging LLVM

for the SIMD OSL backend gives us the ability to change directions and vary the scope of vectorization,

both inside and across lanes.

Perlin* Noise in SIMD OSL
The original version of Perlin noise in non-SIMD OSL is optimized to perform block vectorization within the

algorithm using Intel SSE intrinsics (Figure 8). To enable outer loop vectorization while retaining performance

of the original Perlin noise, we eliminate SSE intrinsics and revert to the original C++ version of the algorithm

by creating a perlin_scalar helper. We then leverage the wide accessors to import and export the

data type out of the underlying SOA data layout. The outer loop vectorization is implemented by OpenMP

#pragma and specifying the SIMD width. Inside the loop, we export the data for the current lane, perform

scalar computation via perlin_scalar, and then import results for the lane. Note that the

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

48The Parallel Universe

actual perlin_scalar computation is oblivious to our data layout and our outer SIMD loop. Once this is

all inlined, the compiler can produce ideal code for multiple target ISAs (SSE2, AVX, AVX2, AVX-512, etc.). To

ensure proper inlining on the Intel® C++ Compiler, we judiciously use #pragma forceinline recursive.

8 Enabling SIMD in Perlin noise in OSL

Performance of SIMD OSL on Intel® Xeon® Processors
We evaluate performance of OSL benchmarks and individual OSL shaders on two Intel® Xeon® processors:

•• A two-socket, 40-core Intel Xeon Gold 6248 processor @2.50GHz

•• A two-socket, 48-core Intel Xeon Platinum 8260L processor @2.30GHz with hyperthreading turned off

OSL is run via testshade, a test harness that exercises shaders and shader groups. Testshade can also be

viewed as a substitute for a shading module in a renderer. Testshade can be executed as single- or multi-

threaded. We showcase the superior performance of SIMD OSL via:

•• A suite of microbenchmarks comprising important OSL functions

•• A set of individual shaders that represent different textures and patterns

Performance of SIMD OSL Microbenchmarks on Intel® Xeon®
Platinum 8260L Processor
The OSL microbenchmark suite includes individual OSL functions from OSL function families―string,

noise, math, trigonometry, logical operations, binary operations, spline, and others. Figure 9 shows the

speedup of AVX-512 SIMD OSL over scalar OSL from trials using 48 threads with batch size of 16.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/c-compilers

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

49The Parallel Universe

9 SIMD OSL microbenchmarks on an Intel Xeon Platinum 8260L processor @2.30GHz

The speedup across the 67 functions in the microbenchmark averages 7x, with a maximum speedup of

13.8x (Gabor noise).

Speedup of SIMD OSL over Single-Point Scalar OSL on Individual
Shaders on Intel® Xeon® Gold 6248 Processor
We evaluated a set of open source shaders using AVX-512 SIMD OSL, AVX2 SIMD OSL, and scalar OSL on

an Intel Xeon Gold 6248 processor @2.5GHz. Each shader—marble7, concrete10, diamond plate11, donut12,

leopard13, oak14, threads15—represents a distinct texture, as shown in Figure 10. The shaders differ in their

complexity and the types and quantity of OSL functions they employ. For instance, the thread, marble, and

oak shaders have a relatively simple control flow with only one or no branches, a single input, and a single

output. On the other hand, shaders like concrete and leopard have a more complicated and divergent

control flow.

10 OSL shaders. From left to right: concrete, leopard, oak, marble, diamondplate, threads,
and donut

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

50The Parallel Universe

First, we evaluate the speedup of the OSL shaders using SIMD OSL and compare performance against

scalar single-point OSL (Figure 11). Note the concrete shader with its noise function calls enjoys a

performance benefit of 9.7x. All shaders show a speedup between 3.7x to 8.4x.

We next evaluate the speedup of AVX-512 SIMD OSL over AVX2 SIMD OSL (Figure 12). All the shaders

showed a benefit using the wider batch size that AVX-512 provides.

11 Speedup of SIMD OSL over scalar OSL on an individual OSL shaders on Intel Xeon
Gold 6248 processor @2.50GHz

12 Speedup of AVX-512 SIMD OSL over AVX2 SIMD OSL on individual OSL shaders on an
Intel Xeon Gold 6248 processor @2.50GHz

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

51The Parallel Universe

Turbo-Charged Open Shading Language
Intel has been leading the rearchitecture of SIMD OSL since 2016. This rearchitecture can be broadly

summarized in two steps:

•• Introducing vector LLVM IR generation (for JIT) during render-time optimization

•• Adding a batched interface to the default single-point interface in OSL

SIMD OSL produced considerable benefit in physically-based renderers such as Pixar’s RenderMan. The

recently released RenderMan 22.5 with SIMD OSL has seen up to 2x faster full renders and a 15% average

speedup using Intel Xeon Scalable processors with Intel AVX-512.3

References
1.	Open Shading Language Sci Tech Award in 2017
2.	Open Shading Language Repository
3.	Pixar Animation Studios Releases RenderMan 22.5
4.	RenderMan: What’s New
5.	FMX 2019
6.	Open Shading Language Specification
7.	Marble Shader
8.	OSL Talk at SIGGRAPH 2018
9.	Intel® SIMD Data Layout Templates (SDLT)
10.	 Concrete.osl
11.	 DiamondPlate.osl
12.	 TheDonutShader.osl
13.	 Leopard.osl
14.	 Oak.osl
15.	 Threads.osl

Learn
MoreIntel® C++ Compiler

Built-In Productivity & Performance

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://oscar.go.com/news/winners/19023
http://github.com/imageworks/OpenShadingLanguage
https://renderman.pixar.com/news/pixar-animation-studios-releases-renderman-22-5
https://renderman.pixar.com/news/pixar-animation-studios-releases-renderman-22-5
https://www.fxguide.com/featured/renderman-22-5-ships-toys-go-wild/
https://raw.githubusercontent.com/imageworks/OpenShadingLanguage/master/src/doc/osl-languagespec.pdf
https://renderman.pixar.com/forum/download.php • Pixar’s RenderMan* examples ./scenes/pattern/osl/shaders/marble.osl
https://software.intel.com/en-us/videos/unleashing-intel-advanced-vector-extensions-512-intel-avx-512-inside-the-open-shading
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-introduction-to-the-simd-data-layout-templates
https://github.com/varkenvarken/osl-shaders/blob/master/Shaders/concrete.osl
https://github.com/varkenvarken/osl-shaders/blob/master/Shaders/diamondplateshader.osl
https://github.com/ADN-DevTech/3dsMax-OSL-Shaders/blob/master/OSL/ADN-Experimental/TheDonutShader.osl
https://github.com/varkenvarken/osl-shaders/blob/master/Shaders/leopard.osl
https://renderman.pixar.com/forum/download.php • Pixar’s RenderMan* examples ./scenes/pattern/osl/shaders/oak.osl
https://github.com/ADN-DevTech/3dsMax-OSL-Shaders/blob/master/OSL/ADN-Experimental/Threads.osl
https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/c-compilers

Supercharge
Python*

PErformance
Free Download >

For more complete information about compiler optimizations, see our Optimization Notice at
 software.intel.com/articles/optimization-notice#opt-en.
Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
© Intel Corporation

Get Intel® Distribution
for Python* now.

Software

https://software.intel.com/en-us/distribution-for-python

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

53The Parallel Universe

Mike Croucher, Developer Advocate, Numerical Algorithms Group (NAG)

For a long time now, the route to increased performance has been via parallelization. Vectorization,

threads, MPI*, OpenMP*, GPUs, FPGAs, and dozens more hardware and software technologies promise to

give you the performance you and your users crave. So you choose a set of technologies, embark on your

code optimisation journey, and realize some fantastic speedups that your users eagerly consume. The

success stories roll in and you sit back, content that the community is now using your product to solve

bigger and more advanced problems than anyone ever considered feasible. All is going well.

Pursuing the Never-Ending Quest for Performance

The Performance Optimisation and
Productivity (PoP) Project

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

54The Parallel Universe

But the quest for improved performance is never over, and soon your users want you to perform the

speedup trick once again. The models they’re building are bigger and more complex than ever. And

the hardware they’re running them on has new vectorization tricks―and much higher core counts―

than you ever considered before. Your code base is huge, your budget limited, and all the low-hanging

fruit has been picked and devoured.

Where do you start applying your development efforts?

The PoP Project
The Performance Optimisation and Productivity (PoP) project is a European Union-funded,

international group of partners working to improve parallel software via several complementary

routes including:

•• Developing a general methodology that can be used to understand parallel performance

•• Developing open source tools that can be used to apply the PoP methodology

•• Creating a set of detailed case studies where PoP experts demonstrate these developments by
auditing and refactoring the code of academic and industrial clients (available for free for clients within
the EU).

The PoP methodology can be applied to a range of parallelization schemes and programming

languages. OpenMP and MPI in Fortran*, C, and C++ are the most popular, but PoP has also worked

on applications written in MATLAB*, Python*, and Perl*, among others.

The PoP Methodology
Traditionally, there are several things we can try to gather intelligence about our application, such as

scaling experiments, profiling, and tracing using products like Intel® VTune™ Amplifier or the open-

source tools developed by some PoP partners. These can result in a huge amount of data to sift

through, containing everything from instruction counters to cache misses. It can be difficult to move

from this sea of information to the kind of insights that would really help a code developer determine

the most appropriate direction to follow to improve the code.

The PoP methodology distills this sea of data into a small hierarchy of metrics that measure

the relative impact of the different factors inherent in parallelization. Each metric is a measure of

efficiency between 0 and 1, where higher numbers are better. As a rule of thumb, PoP considers

anything below 0.8 as worthy of further attention.

A case study can help us understand these metrics.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://pop-coe.eu/
https://software.intel.com/en-us/vtune
https://sharepoint.ecampus.rwth-aachen.de/units/rz/HPC/public/Shared Documents/Metrics.pdf

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

55The Parallel Universe

The PoP Metrics and zCFD*

One of the PoP partners, The Numerical Algorithms Group (NAG), recently worked on the

commercial computational fluid dynamics solver zCFD*, developed by Zenotech. By generating

the PoP metrics from Intel VTune Amplifier data and collaborating with the original developers, NAG

helped improve the runtime of one particular simulation by 3x.

The first step in the audit was to limit the collection of Intel VTune Amplifier data to only the region of

interest (RoI). zCFD uses a Python package (zCFD-driver*) that calls computational kernels written in

C++. As such, the team used the NERSC Python VTune Instrumentation and Tracing Technology
(ITT) API bindings to disable tracing outside the RoI.

Once the Intel VTune Amplifier data was collected for simulation runs on varying numbers of cores,

the first set of PoP metrics could be computed (Table 1). (How to compute the PoP metrics from

Intel VTune Amplifier data is outside the scope of this article. For details, see the PoP webinar on
this case study. An alternative method is described in the article Automatic Calculation of PoP
Metrics Using Scalasca.)

Threads 1 2 4 6 8 10 12
Global
Efficiency 0.97 0.71 0.66 0.52 0.55 0.49 0.33

Parallel
Efficiency 0.97 0.80 0.77 0.64 0.67 0.60 0.50

Computational
Efficiency 1.00 0.89 0.85 0.82 0.82 0.82 0.66

Table 1. PoP metrics

The headline figure is global efficiency, which is the product of the parallel and computational efficiencies.

Parallel efficiency measures the effect that parallelizing the code has on the runtime. This includes the

impact of factors such as:
•• How well-balanced the computational load is between threads

•• How much time is lost to parallel overheads

It’s calculated as the ratio between the average amount of time that threads spend in useful computation

and the total runtime of the application.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.nag.com/
https://zenotech.com/zcfd-zenotech-computational-fluid-dynamics/
https://github.com/zCFD/zCFD-driver
https://github.com/NERSC/itt-python
https://github.com/NERSC/itt-python
https://pop-coe.eu/blog/8th-pop-webinar-pop-case-study-3x-speed-improvement-for-zenotechs-zcfd-solver
https://pop-coe.eu/blog/8th-pop-webinar-pop-case-study-3x-speed-improvement-for-zenotechs-zcfd-solver
https://pop-coe.eu/blog/automatic-calculation-of-pop-metrics-using-scalasca
https://pop-coe.eu/blog/automatic-calculation-of-pop-metrics-using-scalasca

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

56The Parallel Universe

Computational efficiency describes how well the computational load of the application scales with the

number of threads. It’s the ratio between the total time across all threads that the code spends in useful

computation and the time the serial code spends in useful computation.

We observe that there’s a general decline in global efficiency as the number of threads increases. This

is largely driven by a corresponding decline in parallel efficiency. The computational efficiency doesn’t

decline as much, except on 12 threads.

Taken together, these efficiencies suggest that the prime opportunity for improvement lies in the way

work is divided among threads rather than the computations each thread performs. For example, on 10

threads, the computational efficiency of 0.82 denotes that there’s the potential to improve runtime by

18% if issues associated with computation are addressed―compared with a potential 44% improvement

from addressing parallelization issues that the parallel efficiency of 0.56 suggests. With that said, there’s

something very strange going on with computational efficiency at 12 cores.

Parallel Efficiency
Now that we understand that focusing on parallel efficiency should give us the most gains, we can dive

deeper to try to understand why it’s so poor. A straightforward metric we can obtain from Intel VTune

Amplifier is the percentage of runtime spent in serial sections of code (Table 2).

Threads 1 2 4 6 8 10 12
Percentage
of Runtime in
Serial

— 88.6 84.6 75.0 74.2 70.1 66.6

Table 2. Runtime in serial code

By the time we reach 12 cores, 33% of our runtime is spent in serial code sections. Further investigation

determines there was a region the developers had attempted to parallelize, but that was actually still

running sequentially. Some refactoring corrected this.

Load balance efficiency (Table 3) shows that work is spread unevenly across threads.

Threads 1 2 4 6 8 10 12
Load Balance
Efficiency 1.00 0.88 0.89 0.85 0.89 0.86 0.85

Table 3. Load balance efficiency

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

57The Parallel Universe

Further investigation shows that the main load imbalance occurred in a region of code that called the

pow() function. This was hitting a slow code path. Because both the base and the exponent were

close to 1, pow() was computing the result to high accuracy, which took a lot of time. But this level of

accuracy was not needed by the computation. This was resolved by scaling the base, raising it to the

power, and then undoing the scaling1:

The two calls to pow() can be computed at the same time using vectorization, so this change only

incurred the cost of a single extra divide.

 Computational Efficiency
Although the metrics showed us that computational efficiency isn’t as important as parallel efficiency

for this particular problem, there’s something very strange going on when we move from 10 to 12

cores that warrants a closer look. We might hope it’s something straightforward that we can easily fix.

Happily, this is the case.

There are three submetrics that make up computational efficiency (Table 4):
1.	 Instructions per cycle (IPC) efficiency

2.	 Instructions efficiency

3.	 CPU frequency efficiency

Instruction efficiency is the ratio of the total number of useful instructions for a reference case

(e.g., one processor) compared to values when increasing the numbers of processes. A decrease in

instruction efficiency corresponds to an increase in the total number of instructions required to solve a

computational problem.

IPC efficiency compares IPC to the reference, where lower values indicate that the rate of computation

has slowed. Typical causes for this include decreasing cache hit rate and exhaustion of memory

bandwidth, which can leave processes stalled and waiting for data.

CPU frequency efficiency looks at how clock speed changes as the number of threads increases.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://stackoverflow.com/questions/9272155/replacing-extrordinarily-slow-pow-function/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

58The Parallel Universe

Threads 1 2 4 6 8 10 12
IPC Efficiency 1.00 0.94 0.93 0.92 0.91 0.90 0.91
Instructions
Efficiency 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CPU Frequency
Efficiency 1.00 0.94 0.91 0.89 0.90 0.91 0.72

Table 4. Submetrics that make up computational efficiency

There’s nothing much of interest going on with the IPC and instructions efficiencies, but the CPU

frequency drops sharply going from 10 to 12 cores.

Zenotech determined that the CPU frequency governor was set to on-demand by default on the

machine used for the audit, and that this was responsible for the drop in operating frequency. Adding

--cpu-freq=performance to the Slurm* commands resolved the issue by instructing the CPU to

run at its base frequency even when fully populated with threads.

 Results
Guided by these metrics, the developers of zCFD made the changes to the code and compute

environment described above (along with a few more that we don’t have the space to describe here).

Recalculating the metrics on the new code resulted in the efficiencies shown in Table 5.

Threads 1 2 6 12
Global Efficiency 1.00 0.89 0.73 0.56
Parallel Efficiency 1.00 0.98 0.89 0.76
Computational Efficiency 1.00 0.91 0.82 0.74

Table 5. Efficiencies

We see across-the-board improvements comparing Table 5 to Table 1. And when Zenotech ran the

new code on a much larger problem, they observed speedups of up to 3x compared to the original

code. Even with this success, the metrics suggest there might be yet more room for improvement. The

quest continues.

Applying for a PoP Code Audit
The PoP Project provides performance optimization and productivity services for academic and
industrial code in all domains. They offer a portfolio of services designed to help users optimize
parallel software and understand performance issues. The services are free of charge to academic,
research, or commercial organisations in the EU. You’re invited to apply for PoP time via the website.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://pop-coe.eu/request-service-form

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

59The Parallel Universe

James Reinders, Editor Emeritus, The Parallel Universe

Taking Another Look at Intel and HPC Software

Seven Ways HPC Software Developers Can
Benefit from Intel® Software Investments

Intel has been a powerhouse in supporting HPC software, but much has changed over the years. Here’s a quick

look at changes from Intel’s software teams that you may not have noticed as things evolve.

HPC is at the dawn of a new golden age of hardware variety that recalls the early days of vector

supercomputers, systolic arrays, and hypercubes. But today, a huge difference is the enormous installed base

of mission-critical scientific and engineering software. And now, success in HPC is about making hardware

subservient to software needs.

Here’s a list of seven key ways Intel’s contributions matter for HPC software developers.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

60The Parallel Universe

	 Community Support: Lifting Popular Community Codes to	 	
	 Higher Performance―and Letting Us Learn from It, Too
Intel established the Intel® Parallel Computing Centers (IPCC) and the Intel® Modern Code initiative

to help HPC software harness new hardware. IPCCs have contributed changes to a wide variety of open

source applications used in HPC. And the Modern Code initiative has many online resources for learning

essential techniques (visit the site for interesting interviews, training, white papers, and more).

The IPCCs documented their learnings in a highly accessible two-book series known as High-Performance
Parallelism Pearls (which I helped edit). These books detail techniques for modernizing code using

parallelization, vectorization, and algorithm selection—all of which would help any developer targeting the

second-generation Intel® Xeon® Scalable processors (previously code-named Cascade Lake) covered in

this issue's feature article.

	 Deep Program Analysis Tools: Helping Experts Tune their 			
	 Applications and Systems
Nothing is more valuable than knowing what’s really going on when you run an application. Intel’s

tools can also help with forecasting maximum speedup, locating bottlenecks, and pointing out parallel

programming errors (pinpointing potential data races and deadlock). The name VTune has become

legendary among profiling tools. New innovations offer roofline analysis, application performance

snapshots, storage performance snapshots, MPI communications analysis (Intel® Trace Analyzer and
Collector), and profiling of compiled code mixed with Python* and Java*. An application performance

snapshot is a great place to start, but you’ll find yourself eager to learn more in your quest to improve

performance. Start with Intel® VTune™ Amplifier, but don’t miss Intel® Inspector and Intel® Advisor.

1

2

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/ipcc
https://software.intel.com/modern-code
https://software.intel.com/modern-code
https://www.sciencedirect.com/book/9780128021187/high-performance-parallelism-pearls
https://www.sciencedirect.com/book/9780128021187/high-performance-parallelism-pearls
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable.html
https://software.intel.com/en-us/trace-analyzer
https://software.intel.com/en-us/trace-analyzer
https://software.intel.com/vtune
https://software.intel.com/inspector
https://software.intel.com/advisor

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

61The Parallel Universe

	 Highly-Tuned Libraries: Drop Them In and Run Faster

Nothing’s easier than using a vendor-optimized library to make a program run faster. Intel® Math
Kernel Library (Intel® MKL) has done this for BLAS, FFTs, and solvers for years. Today, the complete
suite of Intel® Performance Libraries should be in every HPC developer’s toolkit:

•• Intel® Math Kernel Library: Accelerate math processing routines, increase application performance, and
reduce development time.

•• Intel® MPI Library: Deliver flexible, efficient, and scalable cluster messaging on Intel® architecture.
•• Intel® Threading Building Blocks: Get advanced threading for fast, scalable parallel applications.
•• Intel® Integrated Performance Primitives: Speed performance for imaging, vision, signal, security, and

storage applications.
•• Intel® Data Analytics Acceleration Library: Boost machine learning and data analytics performance

with this easy-to-use library.

	 Optimizing Compilers: Compile with Them and Run Faster

Augment your development process with compilers from Intel to create applications that run
faster and more efficiently. These tools produce optimized code that takes advantage of the ever-
increasing core count and vector register width in Intel® processors. The compilers plug into popular
development environments and are compatible with third-party compilers such as the Microsoft*
Visual C++ compiler (for Windows*) and GNU* compiler (for Linux* and macOS*). Learn more here.

	 Software-Defined Visualization

I’ve been repeatedly reminded that most visualization work in HPC is done on CPUs. Intel has invested
heavily to support high-performance scientific visualization. The in situ nature of such work (plus the
sophisticated rendering tasks) lend it to CPU rendering because it minimizes data movement. Also, a
CPU’s rendering pipeline is not hardwired.

Learn more about Intel’s software here and more about software-defined visualization in general at
http://sdvis.org/.

3

4

5

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/performance-libraries
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mpi-library
https://software.intel.com/en-us/intel-tbb
https://software.intel.com/en-us/intel-ipp
https://software.intel.com/en-us/intel-daal
https://software.intel.com/compilers
https://software.intel.com/rendering-framework
http://sdvis.org/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

62The Parallel Universe

	 High-Performance AI with Intel-Optimized Deep Learning 	
	 Frameworks and Accelerated Python*

Intel has invested in optimizing popular deep learning frameworks (e.g., TensorFlow* and

PyTorch*) to do high-performance training and inference. Learn more at the Intel AI Developer
Program. Intel has also optimized Python (focusing on NumPy*, SciPy*, and scikit-learn*) to make

scientific codes run faster without any code changes required. Learn about the many ways to install

it here.

	 Cross-Architecture Tools: Intel® Distribution of OpenVINO™ 	
	 Toolkit and a Vision to Help You Code Once and Run Faster 	
	 Across a Variety of Hardware

The concept of code once and run everywhere isn’t new, but all the solutions seem to incur severe

performance penalties on at least some platforms. Intel started an open-source project known as

Intel® Distribution of OpenVINO™ toolkit (which stands for open visual inferencing and neural

network optimization). It spans CPUs, GPUs, FPGAs, and VPUs. For anyone looking to portably run

neural networks across many architectures, this is well worth a look.

For now, that’s a pretty specific crowd. However, at Intel Architecture Day 2018, the company laid

out its vision for a “oneAPI” project with a goal of “no transistor left behind.” It’s a vision that looks

to be a logical extension of their powerhouse of software support for HPC, which is already in the

market and useful for us today.

Intel and HPC Software Development

In many ways, Intel and HPC have grown up together—and both have become very diverse and

complex. Intel’s investments in software continue to expand the ways it helps HPC software

developers. I’ve listed seven concrete things to download, learn, and use to be more productive

thanks to Intel. And―as the seventh of these tells us―Intel is nowhere near done contributing to

the HPC community.

6

7

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/frameworks
https://software.intel.com/en-us/ai
https://software.intel.com/en-us/ai
https://software.intel.com/distribution-for-python/choose-download
https://software.intel.com/openvino-toolkit
https://newsroom.intel.com/articles/new-intel-architectures-technologies-target-expanded-market-opportunities/
https://newsroom.intel.com/news/intels-one-api-project-delivers-unified-programming-model-across-diverse-architectures/#gs.ob3qaf

Software

The Parallel
Universe

		 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For
more complete information visit www.intel.com/benchmarks. Configuration: Refer to Detailed Workload Configuration Slides in this presentation. Performance results are based on
testing as of March 11th and March 25th 2019 and may not reflect all publicly available security updates. See configuration disclosures for details. No product can be absolutely secure.
*Other names and brands may be claimed as property of others.

		 Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other
sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit www.intel.com/bench-
marks.

		 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system
configuration.

		 Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include
SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchi-
tecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by
this notice. Notice Revision #20110804

		 Intel® Advanced Vector Extensions (Intel® AVX)* provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing AVX instructions
may cause a) some parts to operate at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Perfor-
mance varies depending on hardware, software, and system configuration and you can learn more at http://www.intel.com/go/turbo.

		 Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data
are accurate.

		 This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel repre-
sentative to obtain the latest forecast, schedule, specifications and roadmaps.

		 The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are available
on request.

		 Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.
		 Copyright © 2019 Intel Corporation. All rights reserved. Intel, Xeon, Xeon Phi, VTune, OpenVINO, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
		 OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.
 		 * Other names and brands may be claimed as the property of others.		 Printed in USA		 0719/SS	 	 Please Recycle

