
00001101
00001010
00001101
00001010
01001100
01101111
01110010
01100101
01101101
00100000
01101000
01110001
01110011
01110101

Issue

36
2019

Effectively Train and Execute
Machine Learning and Deep
Learning Projects on CPUs
Parallelism in Python* Using Numba*

Boosting the Performance of Graph Analytics	Workloads	

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

2The Parallel UniverseCONTENTS
FE

AT
U

RE

Letter from the Editor 	 3
Onward to Exascale
by Henry A. Gabb, Senior Principal Engineer, Intel Corporation

Effectively Train and Execute Machine Learning and Deep Learning 		
Projects on CPUs 	 5
Meet the Intel-Optimized Frameworks that Make It Easier

Parallelism in Python* Using Numba*	 17	
It Just Takes a Bit of Practice and the Right Fundamentals

Boosting the Performance of Graph Analytics Workloads	 23 	
Analyzing the Graph Benchmarks on Intel® Xeon® Processors

How Effective is Your Vectorization? 	 29
Gain Insights into How Well Your Application is Vectorized Using Intel® Advisor

Improving Performance using Vectorization for Particle-in-Cell Codes 	 37
A Practical Guide

Boost Performance for Hybrid Applications with Multiple Endpoints 		
in Intel® MPI Library 	 53 	
Minimal Code Changes Can Help You on the March Toward the Exascale Era

Innovate System and IoT Apps	 63
How to Debug, Analyze, and Build Applications More Efficiently Using Intel® System Studio

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

3The Parallel Universe

Onward to Exascale Computing
As you may know, I’m an old-school HPC guy―not by choice, but out of necessity. High-
performance computing (HPC) has a double meaning, depending on who you’re talking to. On
the one hand, it simply means improving application performance in the generic sense. Some
of my friends on the compiler team see a 5% speedup as HPC. And, in their world, they’re right.
In my world, HPC refers to computing on a grand scale―harnessing thousands of cores to get
orders of magnitude speedups. (Think TOP500.)

That’s why I’m understandably excited about the announcement last month of the Aurora*
supercomputer Intel is collaborating on with Argonne National Laboratory. (See U.S.
Department of Energy and Intel to Deliver First Exascale Supercomputer for the whole
story.) Aurora is expected to deliver exaFLOPS performance (i.e., a quintillion, or 1018, floating-
point operations per second). Exascale systems will be essential for converged workflows, as
we discussed in the last issue of The Parallel Universe.

Three articles in our current issue touch on optimizations that the push to exascale demands.
The Princeton Plasma Physics Laboratory is doing the type of science that will take advantage
of an exascale system. Their article, Improving Performance by Vectorizing Particle-in-Cell
Codes, describes how they fine-tuned one of their critical algorithms. How Effective Is Your
Vectorization? shows how to take advantage of the information provided by Intel® Advisor.
Boost Performance for Hybrid Applications with Multiple Endpoints in Intel® MPI Library
describes enhancements that improve the scalability of applications that combine message
passing and multithreading.

That’s enough about HPC. What else is in this issue? The feature article, Effectively Train and
Execute Machine Learning and Deep Learning Projects on CPUs, describes the Intel® Math
Kernel Library for Deep Neural Networks and how it’s used to accelerate AI frameworks.
We also have two other articles that data scientists should find interesting: Parallelism in
Python* Using Numba* and Boosting the Performance of Graph Analytics Workloads. The

3The Parallel Universe

LETTER FROM THE EDITOR
Henry A. Gabb, Senior Principal Engineer at Intel Corporation, is a longtime high-performance and
parallel computing practitioner who has published numerous articles on parallel programming. He
was editor/coauthor of “Developing Multithreaded Applications: A Platform Consistent Approach”
and program manager of the Intel/Microsoft Universal Parallel Computing Research Centers.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.top500.org/project/
https://newsroom.intel.com/news-releases/u-s-department-energy-intel-deliver-first-exascale-supercomputer/#gs.2qchq9
https://newsroom.intel.com/news-releases/u-s-department-energy-intel-deliver-first-exascale-supercomputer/#gs.2qchq9
https://software.intel.com/en-us/download/parallel-universe-magazine-issue-35-january-2019
https://software.intel.com/en-us/advisor
https://github.com/intel/mkl-dnn
https://github.com/intel/mkl-dnn

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

4The Parallel Universe

former provides practical advice on using the Numba compiler to significantly improve the
performance of Python numerical kernels. The latter describes the analysis of the 		
GAP Benchmark Suite, a common benchmark for graph analytics. Finally, we close this issue
with a review of the analysis tools in Intel® System Studio: Innovate System and IoT Apps.

As always, don’t forget to check out Tech.Decoded, Intel’s knowledge hub for developers, for
more on solutions for code modernization, visual computing, data center and cloud computing,
data science, and systems and IoT development. And if you haven't already, be sure to
subscribe to The Parallel Universe so you won't miss a thing.

Henry A. Gabb
April 2019

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
http://gap.cs.berkeley.edu/benchmark.html
https://software.intel.com/en-us/system-studio
https://techdecoded.intel.io/
https://software.seek.intel.com/parallel-universe-magazine

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

5The Parallel Universe

Nathan Greeneltch and Jing Xu, Software Technical Consulting Engineers, Intel Corporation

When you’re developing AI applications, you need highly optimized deep learning models that enable an

app to run wherever it’s needed and on any kind of device—from the edge to the cloud. But optimizing

deep learning models for higher performance on CPUs presents a number of challenges, like:
•• Code refactoring to take advantage of modern vector instructions

•• Use of all available cores

•• Cache blocking

•• Balanced use of prefetching

•• And more

Meet the Intel-Optimized Frameworks that Make It Easier

Effectively Train and Execute Machine
Learning and Deep Learning Projects on CPUs

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

6The Parallel Universe

These challenges aren’t significantly different from those you see when you’re optimizing other

performance-sensitive applications—and developers and data scientists can find a wealth of deep

learning frameworks to help address them. Intel has developed a number of optimized deep learning

primitives that you can use inside these popular deep learning frameworks to ensure you’re implementing

common building blocks efficiently through libraries like Intel® Math Kernel Library (Intel® MKL).

In this article, we’ll look at the performance of Intel’s optimizations for frameworks like Caffe*,

TensorFlow*, and MXNet*. We’ll also introduce the type of accelerations available on these frameworks

via the Intel® Math Kernel Library for Deep Neural Networks (Intel® MKL-DNN) and show you how to

acquire and/or build these framework packages with Intel’s accelerations―so you can take advantage of

accelerated CPU training and inference execution with no code changes (Figures 1 and 2).

1 Deliver significant AI performance with hardware and software optimizations on 	
Intel® Xeon® Scalable processors.

2 Boost your deep learning performance on Intel Xeon Scalable processors with Intel®
Optimized TensorFlow and Intel MKL-DNN.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/mkl
https://github.com/intel/mkl-dnn

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

7The Parallel Universe

Intel® Math Kernel Library for DNN
Intel MKL-DNN is an open-source performance library that accelerates deep learning applications and

frameworks on Intel® architectures. Intel MKL-DNN contains vectorized and threaded building blocks that

you can use to implement deep neural networks (DNN) with C and C++ interfaces (Table 1).

The performance benefit from Intel MKL-DNN primitives is tied directly to the level of integration to

which the framework developers commit (Figure 3). There are reorder penalties for converting input data

into Intel MKL-DNN preferred formats, so framework developers benefit from converting once and then

staying in Intel MKL-DNN format for as much of the computation as possible.

Also, 2-in-1 and 3-in-1 fused versions of layer primitives are available if a framework developer wants to

fully leverage the power of the library. The fused layers allow for Intel MKL-DNN math to run concurrently

on downstream layers if the relevant upstream computations are completed for that piece of the data/image

frame. A fused primitive will include compute-intensive operations along with bandwidth-limited ops.

Function Features

Compute-intensive
operations

•• 1D, 2D and 3D spatial convolution and deconvolution

•• Inner product

•• General-purpose matrix-matrix multiplication

•• Recurrent neural network (RNN) cells

Memory-bound operations

•• Pooling

•• Batch normalization

•• Local response normalization

•• Activation functions

•• Sum

Data manipulation
•• Reorders/quantization

•• Concatenation

Primitive fusion •• Convolution with sum and activations

Data types
•• fp32

•• int8

Table 1. What’s included in Intel MKL-DNN

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

8The Parallel Universe

Installing Intel MKL-DNN
Intel MKL-DNN is distributed in source code form under the Apache* License Version 2.0. See the Readme
for up-to-date build instructions for Linux*, macOS*, and Windows*.

The VTUNEROOT flag is required for integration with Intel® VTune™ Amplifier. The Readme explains how

to use this flag.

Installing Intel-Optimized Frameworks

Intel® Optimization for TensorFlow*
Current distribution channels are PIP, Anaconda, Docker, and build from source. See the 			

Intel® Optimization for TensorFlow* Installation Guide for detailed instructions for all channels.

3 Performance versus level of integration and Intel MKL-DNN data format visualization

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://github.com/intel/mkl-dnn
https://software.intel.com/en-us/vtune
https://software.intel.com/en-us/articles/intel-optimization-for-tensorflow-installation-guide

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

9The Parallel Universe

Anaconda – Linux:

Anaconda – Windows:

Intel® Optimization for Caffe*
Intel has a tutorial describing how to use Intel® Optimization for Caffe* to build Caffe optimized for Intel

architecture, train deep network models using one or more compute nodes, and deploy networks.

Intel® Optimization for MXNet*

Intel has a tutorial explaining Intel® Optimization for Apache* MXNet.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://ai.intel.com/caffe/
https://software.intel.com/en-us/articles/apache-mxnet-v120-released-with-intel-optimized-cpu-backend
https://ai.intel.com/apache-mxnet-v1-2-0-optimized-with-intel-math-kernel-library-for-deep-neural-networks-intel-mkl-dnn/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

10The Parallel Universe

Performance Considerations and Runtime Settings
Now let’s consider TensorFlow runtime settings for best performance―specifically, convolutional

neural network (CNN) inference. The concepts can be applied to other frameworks accelerated with

Intel MKL-DNN and other use cases. However, some empirical testing will be required. Where necessary,

we’ll give different recommendations for real-time inference (RTI) with batch size of 1 and maximum

throughput (MxT) with tunable batch size.

Maximum Throughput versus Real-Time Inference

Deep learning inference is usually done with two different strategies, each with different performance

measurements and recommendations:

•• Max Throughput (MxT) looks to process as many images per second, passing in batches of size > 1.
We can achieve the best performance by exercising all the physical cores on a socket. This solution is
intuitive in that we simply load up the CPU with as much work as we can, and process as many images
as we can, in a parallel and vectorized fashion.

•• Real-time Inference (RTI) is an altogether different scenario where we want to process a single
image as quickly as possible. Here, we aim to avoid penalties from excessive thread launching and
orchestration between concurrent processes. The strategy is to confine and execute quickly.

Let’s discuss some best-known methods (BKMs) for maximizing MxT and RTI performance.

TensorFlow Runtime Options Affecting Performance

These runtime options heavily affect TensorFlow performance. Understanding them will help you get the

best performance out of Intel’s optimizations. BKMs differ for MxT and RTI.

These runtime options heavily affect TensorFlow performance. Understanding them will help you get

the best performance out of Intel’s optimizations. BKMs differ for MxT and RTI. The runtime options are:

{intra|inter}_op_parallelism_threads and data layout.

{intra|inter}_op_parallelism_threads

•• Recommended settings (MxT): intra_op_parallelism = #physical cores
•• Recommended settings (RTI): intra_op_parallelism = #physical cores
•• Recommended settings for inter_op_parallelism: 2
•• Usage (shell): python script.py --num_intra_threads=cores --num_inter_threads=2 --mkl=True

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

11The Parallel Universe

intra_op_parallelism_threads and inter_op_parallelism_threads are environment

variables defined in tensorflow.ConfigProto. The ConfigProto is used for configuration when creating

a session. These two environment variables control number of cores to use.

The intra_op_parallelism_threads environment variable controls parallelism inside an operation.

For instance, if matrix multiplication or reduction is intended to be executed in several threads, this

environment variable should be set. TensorFlow will schedule tasks in a thread pool which contains

intra_op_parallelism_threads threads. OpenMP threads are bound to thread context as closely as possible

on different cores. Setting this environment variable to the number of available physical cores is recommended.

The inter_op_parallelism_threads environment variable controls parallelism among independent

operations. Since these operations are not relevant to each other, TensorFlow will try to run them

concurrently in the thread pool, which contains inter_op_parallelism_threads threads. To

minimize effects that will be brought to intra_op_parallelsim_threads threads, this environment

variable is recommended to be set to the number of sockets where you want the code to run. For the Intel

Optimization of TensorFlow, we recommend keeping the entire execution on a single socket.

Data Layout

•• Recommended settings: Data_format = NCHW
•• Usage (shell):

 python

 script.py --num_intra_threads=cores --num_inter_threads=2 --mkl=True

 data_format=NCHW

In modern Intel architectures, efficient use of cache and memory greatly impacts overall performance. A

good memory access pattern minimizes the performance cost of accessing data in memory. To achieve

this, it’s important to consider how data is stored and accessed. This is usually referred as data layout. It

describes how multidimensional arrays are stored linearly in the memory address space.

In most cases, data layout is represented by four letters for a two-dimensional image.

•• N: Batch size, indicating number of images in a batch

•• C: Channel, indicating number of channels in an image

•• W: Width, indicating number of pixels in horizontal dimension of an image

•• H: Height, indicating number of pixels in vertical dimension of an image

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

12The Parallel Universe

The order of these four letters indicates how pixel data are stored in 1-d memory space. For instance,

NCHW indicates pixel data are stored in width-wise first, then height-wise, then channel-wise, and finally

batch-wise (Figure 4). The data is then accessed from left to right with channels-first indexing. NCHW

is the recommended data layout for Intel MKL-DNN because this is an efficient layout for the CPU.

TensorFlow uses NHWC as the default data layout, but it also supports NCHW.

NUMA Controls Affecting Performance
•• Recommended settings: --cpunodebind=0 --membind=0
•• Usage (shell):

 numactl --cpunodebind=0 --membind=0 python
 script.py --num_intra_threads=cores --num_inter_threads=2 --mkl=True

 data_format=NCHW

Running on a NUMA-enabled machine brings with it special considerations. NUMA, or non-uniform memory

access, is a memory layout design used in data center machines meant to take advantage of locality of

memory in multi-socket machines with multiple memory controllers and blocks. The Intel Optimization for

TensorFlow runs best when confining both the execution and memory usage to a single NUMA node.

Intel MKL-DNN Technical Performance Considerations

The library takes advantage of SIMD instructions through vectorization, as well as multiple cores through

multithreading. Vectorization effectively utilizes cache and the latest instruction sets. On modern Intel

processors, a single core can perform up to two fused multiply and add (FMA) operations on 16 single-

precision or 64 int8 numbers per cycle. Moreover, the technique of multi-threading helps in performing

multiple independent operations simultaneously. Since deep learning tasks are often independent, getting

available cores working in parallel is an obvious choice to boost performance.

4 Data format/layout: NHWC versus NCHW

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

13The Parallel Universe

To achieve the best possible CPU utilization, Intel MKL-DNN may use hardware-specific buffer layouts for

compute-intensive operations, including convolution and inner product. All the other operations will run

on the buffers in hardware-specific layouts or common layouts used by frameworks.

Intel MKL-DNN uses OpenMP to express parallelism. OpenMP is controlled by various environment

variables: KMP_AFFINITY, KMP_BLOCKTIME, OMP_NUM_THREADS, and KMP_SETTINGS. These

environment variables will be described in detail in the following sections. Changing the values of these

environment variables affects performance of the framework, so we highly recommend that users tune

them for their specific neural network model and platform.

KMP_AFFINITY

•• Recommended settings:
 KMP_AFFINITY=granularity=fine,verbose,compact,1,0

•• Usage (shell):
 numactl --cpunodebind=0 --membind=0 python

 script.py --num_intra_ threads=cores --num_inter_threads=2 --mkl=True

 data_format=NCHW --kmp_affinity=granularity=fine,verbose,compact,1,0

KMP_AFFINITY is used to restrict execution of certain threads to a subset of the physical processing units

in a multiprocessor computer. Set this environment variable as follows:

•• Modifier is a string consisting of a keyword and specifier.

•• Type is a string indicating the thread affinity to use.

•• Permute is a positive integer value that controls which levels are most significant when sorting the
machine topology map. The value forces the mappings to make the specified number of most significant
levels of the sort the least significant, and then inverts the order of significance. The root node of the
tree is not considered a separate level for the sort operations.

•• Offset is a positive integer value that indicates the starting position for thread assignment.

We'll use the recommended setting of KMP_AFFINITY as an example to explain basic content of this

environment variable:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

14The Parallel Universe

The modifier is granularity=fine,verbose. The word fine causes each OpenMP thread to be bound

to a single thread context, and verbose prints messages concerning the supported affinity, e.g.,

•• The number of packages

•• The number of cores in each package

•• The number of thread contexts for each core

•• OpenMP thread bindings to physical thread contexts

The word compact is the value of type, assigning the OpenMP thread <n>+1 to a free thread context as

close as possible to the thread context where the <n> OpenMP thread was placed.

Figure 5 shows the machine topology map when KMP_AFFINITY is set to these values. The OpenMP

thread <n>+1 is bound to a thread context as closely as possible to the OpenMP thread <n>, but on a

different core. Once each core has been assigned an OpenMP thread, the subsequent OpenMP threads are

assigned to the available cores in the same order, but they are assigned on different thread contexts.

5 Machine topology map with the setting KMP_AFFINITY=granularity=fine,compact,1,0

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

15The Parallel Universe

The advantage of this setting is that consecutive threads are bound close together so that communication

overhead, cache line invalidation overhead, and page thrashing are minimized. It's desirable to avoid

binding multiple threads to the same core and leaving other cores not utilized. For more detailed description

of KMP_AFFINITY, see the Intel® C++ Compiler Developer Guide and Reference.

KMP_BLOCKTIME

•• Recommended settings for CNN: KMP_BLOCKTIME=0
•• Recommended settings for non-CNN: KMP_BLOCKTIME=1 (user should verify empirically)

•• Usage (shell):
 numactl --cpunodebind=0 --membind=0 python
 script.py --num_intra_threads=cores --num_inter_threads=2 --mkl=True

 data_format=NCHW --kmp_affinity=granularity=fine,verbose,compact,1,0

 --kmp_blocktime=0(or 1)

This environment variable sets the time, in milliseconds, that a thread should wait after completing the

execution of a parallel region before going to sleep. Default value is 200 ms.

After completing the execution of a parallel region, threads wait for new parallel work to become available.

After a certain period of time has elapsed, they stop waiting and sleep. Sleeping allows the threads to

be used, until more parallel work becomes available, by non-OpenMP threaded code that may execute

between parallel regions, or by other applications. A small KMP_BLOCKTIME value may offer better overall

performance if the application contains non-OpenMP threaded code that executes between parallel

regions. A larger KMP_BLOCKTIME value may be more appropriate if threads are to be reserved solely for

OpenMP execution, but may penalize other concurrently-running OpenMP or threaded applications. The

suggested setting is 0 for CNN-based models.

OMP_NUM_THREADS

•• Recommended settings for CNN: OMP_NUM_THREADS = # physical cores
•• Usage (shell): Export OMP_NUM_THREADS= # physical cores

This environment variable sets the maximum number of threads to use in OpenMP parallel regions if no

other value is specified in the application. The value can be a single integer, in which case each integer

specifies the number of threads for a parallel region at each nesting level. The first position in the list

represents the outermost parallel nesting level. The default value is the number of logical processors

visible to the operating system on which the program is executed. The recommended value equals the

number of physical cores.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-thread-affinity-interface-linux-and-windows

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

16The Parallel Universe

KMP_SETTINGS

•• Usage (shell): Export KMP_SETTINGS=TRUE

This environment variable enables (TRUE) or disables (FALSE) the printing of OpenMP runtime library

environment settings during program execution.

Learn More
Start using Intel® optimized frameworks to accelerate your deep learning workloads on the CPU today. Check

out our helpful resources on www.intel.ai and get support from the Intel® AI Developer Forum. Also, visit the

new Intel® AI Model Zoo for solution-oriented resources for your accelerated TensorFlow* projects. Use these

resources and you can have confidence that you're using your CPU resources to their fullest capability.
__

Configuration Note 1

INFERENCE using FP32 Batch Size Caffe GoogleNet v1 128 AlexNet 256.

Configurations for Inference throughput: Tested by Intel as of 6/7/2018. :Platform :two-socket Intel® Xeon® Platinum processor, 8180 CPU @ 2.50GHz /28 cores HT
ON , Turbo ON. Total Memory: 376.28GB (12slots /32 GB /2666 MHz), four instances of the framework, CentOS Linux*-7.3.1611-Core , SSD sda RS3WC080 HDD
744.1GB,sdb RS3WC080 HDD 1.5TB,sdc RS3WC080 HDD 5.5TB , Deep Learning Framework Caffe version: a3d5b022fe026e9092fc7abc7654b1162ab9940d.
Topology:GoogleNet* v1 BIOS:SE5C620.86B.00.01.0004.071220170215 MKLDNN: version: 464c268e544bae26f9b85a2acb9122c766a4c396 NoDataLayer.
Measured: 1449 imgs/sec vs Tested by Intel as of 06/15/2018 Platform: 2S Intel® Xeon® processor CPU E5-2699 v3 @ 2.30GHz (18 cores), HT enabled, turbo
disabled, scaling governor set to “performance” via intel_pstate driver, 64GB DDR4-2133 ECC RAM. BIOS: SE5C610.86B.01.01.0024.021320181901, CentOS Linux-
7.5.1804(Core) kernel 3.10.0-862.3.2.el7.x86_64, SSD sdb INTEL SSDSC2BW24 SSD 223.6GB. Framework BVLC-Caffe: https://github.com/BVLC/caffe, Inference &
Training measured with “caffe time” command. For “ConvNet” topologies, dummy dataset was used. For other topologies, data was stored on local storage and cached
in memory before training. BVLC Caffe (http://github.com/BVLC/caffe), revision 2a1c552b66f026c7508d390b526f2495ed3be594.

Configuration for training throughput: Tested by Intel as of 05/29/2018 Platform :2 socket Intel Xeon Platinum processor 8180 CPU @ 2.50GHz / 28 cores HT ON ,
Turbo ON Total Memory 376.28GB (12slots / 32 GB / 2666 MHz),4 instances of the framework, CentOS Linux-7.3.1611-Core , SSD sda RS3WC080 HDD 744.1GB,sdb
RS3WC080 HDD 1.5TB,sdc RS3WC080 HDD 5.5TB , Deep Learning Framework Caffe version: a3d5b022fe026e9092fc7abc765b1162ab9940d Topology:alexnet BI
OS:SE5C620.86B.00.01.0004.071220170215 MKLDNN: version: 464c268e544bae26f9b85a2acb9122c766a4c396 NoDataLayer. Measured: 1257 imgs/sec vs.
Tested by Intel as of 06/15/2018 Platform: 2S Intel® Xeon® processor CPU E5-2699 v3 @ 2.30GHz (18 cores), HT enabled, turbo disabled, scaling governor set to
“performance” via intel_pstate driver, 64GB DDR4-2133 ECC RAM. BIOS: SE5C610.86B.01.01.0024.021320181901, CentOS Linux-7.5.1804 (Core) kernel 3.10.0-
862.3.2.el7.x86_64, SSD sdb INTEL SSDSC2BW24 SSD 223.6GB. Framework BVLC-Caffe: https://github.com/BVLC/caffe, Inference nd training measured with “caffe
time” command. For “ConvNet” topologies, dummy dataset was used. For other topologies, data was stored on local storage and cached in memory before training.
BVLC Caffe (http://github.com/BVLC/caffe), revision 2a1c552b66f026c7508d390b526f2495ed3be594

Configuration Note 2

System configuration: CPU Thread(s) per core: 2 Core(s) per socket: 28 socket(s): 2 NUMA node(s): 2 CPU family: 6 Model: 85 Model name: Intel Xeon
Platinum processor 8180 CPU @ 2.50GHz HyperThreading: ON Turbo: ON Memory 376GB (12 x 32GB) 24 slots, 12 occupied 2666 MHz Disks Intel RS3WC080
x 3 (800GB, 1.6TB, 6TB) BIOS SE5C620.86B.00.01.0004. 070920180847 (microcode version 0x200004d) OS Centos Linux 7.4.1708 (Core) Kernel 3.10.0-
693.11.6.el7.x86_64 TensorFlowSource: https://github.com/tensorflow/tensorflow commit: 6a0b536a779f485edc25f6a11335b5e640acc8ab MKLDNN version:
4e333787e0d66a1dca1218e99a891d493dbc8ef1 TensorFlow benchmarks: https://github.com/tensorflow/benchmarks

Intel® Math Kernel Library Free
DownloadFast Math Processing for Intel®-Based Systems

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
http://www.intel.ai/
https://forums.intel.com/s/topic/0TO0P00000018NNWAY/intel-ai-academy?language=en_US
https://github.com/IntelAI/models
https://github.com/BVLC/caffe
http://github.com/BVLC/caffe
https://github.com/BVLC/caffe
http://github.com/BVLC/caffe
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/benchmarks
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

17The Parallel Universe

David Liu, Software Technical Consulting Engineer, Intel Corporation

Obtaining parallelism in Python* has been a challenge for many developers. In issue 35 of The Parallel
Universe, we explored the basics of the Python language and the key ways to obtain parallelism. In this

article, we’ll explore how to achieve parallelism through Numba*.

There are three key ways to efficiently achieve parallelism in Python:
1.	Dispatch to your own native C code through Python’s ctypes or cffi (wrapping C code in Python).

2.	Rely on a library that uses advanced native runtimes, such as NumPy or SciPy.

3.	Use a framework that acts as an engine to generate native-speed code from Python or symbolic math
expressions.

It Just Takes a Bit of Practice and the Right Fundamentals

Parallelism in Python* Using Numba*

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/sites/default/files/parallel-universe-issue-35.pdf
https://software.intel.com/sites/default/files/parallel-universe-issue-35.pdf

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

18The Parallel Universe

All three methods escape the global interpreter lock (GIL), and do so in a way that’s accepted within the

Python community. The Numba framework falls under the third method, because it uses just-in-time (JIT)

and low-level virtual machine (LLVM) compilation engines to create native-speed code. 	

The first requirement for using Numba is that your target code for JIT or LLVM compilation optimization

must be enclosed inside a function. After the initial pass of the Python interpreter, which converts to

bytecode, Numba will look for the decorator that targets a function for a Numba interpreter pass. Next, it

will run the Numba interpreter to generate an intermediate representation (IR). Afterwards, it will generate

a context for the target hardware, and then proceed to JIT or LLVM compilation. The Numba IR is changed

from a stack machine representation to a register machine representation for better optimization at

runtime. From there, the range of options and parallelism directives opens up.

In the following example, we’re using pure Python to give Numba the best chance to optimize without

having to specify directives:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

19The Parallel Universe

Pure CPython bytecode is easier for the Numba interpreter to deal with compared to mixed CPython

and NumPy code. The @jit decorator tells Numba to create the IR, and then a compiled variant, before

running the function. Note the nopython attribute on the decorator. This means that we don’t want to fall

back to stock interpreter behavior if Numba fails to convert the code (more on this later). We used Python

arrays instead of lists because they compile better to Numba. We also created a custom summation

function because Python’s standard sum has special iterator properties that won’t compile in Numba.

The previous example works well for general Python. But what if your code requires the use of scientific or

numerical packages like NumPy or SciPy? Take, for example, the following code that calculates a resistor-

capacitor (RC) time constant for a circuit:

In this case, we’ll use the @vectorize decorator instead of @jit because of NumPy’s implementation

of ufuncs:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

20The Parallel Universe

When dealing with specialized frameworks such as NumPy and SciPy, Numba is not only dealing

with Python, but also with a special type of primitive in the NumPy/SciPy stack called a ufunc, which

normally means one would need to create a NumPy ufunc with C code—a difficult proposition. In

this case, the np.exp() is a good candidate, since it’s a transcendental function and can be targeted

by the Intel® Compiler’s Short Vector Math Library (SVML) in conjunction with Numba. Both 		

@vectorize and @guvectorize can use Intel’s SVML library and help with NumPy ufuncs.

While Numba does have good ufunc coverage, it’s also important to understand that not every NumPy

or SciPy codebase will optimize well in Numba. This is because some NumPy primitives are already highly

optimized. For example, numpy.dot() uses the Basic Linear Algebra Subroutines (BLAS), an optimized C

API for linear algebra. If the Numba interpreter is used, it will actually produce a slower function because it

can’t optimize the BLAS function any further. To use the ufunc optimally in Numba, we’d need to look for

a stacked NumPy call, in which many operations to an array or vector are compounded. For example:

The Numba @jit performance is slightly better than the straight NumPy code because this

computation has not one, but three, NumPy computations. Numba can analyze the ufuncs and

detect the best vectorization and alignment better than NumPy itself can.

Another area to tweak Numba’s compilation directives and performance is using the advanced

compilation options. The main options used are nopython, nogil, cache, and parallel. With

the @jit decorator, Numba attempts to choose the best method to optimize the code given to it.

However, if the nature of the code is better known, you can directly specify a compilation directive.

The first option is nopython, which prevents the compilation from falling back to Python object

mode. If the code is unable to convert, it will instead throw an error to the user. The second option is

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

21The Parallel Universe

nogil, which releases the GIL when not processing non-object code. This option assumes you’ve thought

through multithreaded considerations such as consistency and race conditions. The cache option stores

the compiled function in a file-based cache to avoid unnecessary compilation the next time Numba

is invoked on the same function. The parallel directive is a CPU-tailored transformation to known

reliable primitives such as arrays and NumPy computations. This option is a good first choice for kernels

that do symbolic math.

Stricter function signatures improve the opportunities for Numba to optimize the code. Defining the

expected datatype for each parameter in the signature gives the Numba interpreter the necessary

information to find the best machine representation and memory alignment of the kernel. This is similar

to providing static types for a C compiler. The following examples show how to provide type information

to Numba:

In general, accessing parallelism in Python with Numba is about knowing a few fundamentals and

modifying your workflow to take these methods into account while you’re actively coding in Python. Here

are the steps in the process:

1.	Ensure the abstraction of your core kernels is appropriate. Numba requires the optimization target to
be in a function. Unnecessarily complex code can cause the Numba compilation to fall back to object code.

2.	Look for places in your code where you see processing data in some form of a loop with a known
datatype. Examples would be a for-loop iterating over a list of integers, or an arithmetic computation
that processes an array in pure Python.

3.	If you’re using NumPy and SciPy, look at computations that can be stacked in a single statement
and that are not BLAS or LAPACK functions. These are prime candidates for using the ufunc
optimization capabilities of Numba.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

22The Parallel Universe

•• Experiment with Numba’s compilation options.
•• Determine the intended datatype signature of the function and core code. If it’s known (such as int8

or int32), then inform Numba about which input datatype parameters it should expect.

Achieving parallelism with Numba just takes a bit of practice and the right fundamentals. Getting both

the performance advantages of stepping out of the GIL while having maintainable code is a testament

to the Python community’s hard work in the scientific computing space. Numba is one of the best tools

to achieve performance and exploit parallelism so it should be in every Python developer’s toolkit.

Blog Highlights

Read more >

Intel® Graphics Performance Analyzers 2019 R1 Release
GISELLE G., INTEL CORPORATION

Say hello to some of the latest features for the Intel® Graphics Performance Analyzers (Intel®
GPA) tool suite.

•	 Vulkan Support in Frame Analyzer Stream Capture: Capture the lifetime of an
application through Multiframe Stream capture. Use keyframe functionality to create
"save points" that allow for quicker playback time during profiling and can be used to
signify rendering anomalies at capture.

•	 Edit Shaders: Quickly iterate over shader code changes, without leaving the application
or recompiling code.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/blogs/2019/03/14/intel-graphics-performance-analyzers-2019-r1

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

23The Parallel Universe

Stijn Eyerman, Wim Heirman, and Kristof Du Bois, Research Scientists, and Joshua B. Fryman and
Ibrahim Hur, Principal Engineers, Intel Corporation

A graph is an intuitive way of representing a big data set and the relationships between its elements. Each

vertex represents an element, and edges connect related elements. Representing data sets as a graph

means you can build on the rich history of graph theory. And there are a variety of algorithms to extract

useful information from a graph. In this article, we’ll explore the implementation characteristics of basic

graph analysis algorithms and how they perform on Intel® Xeon™ processors.

Analyzing the Graph Benchmarks on Intel® Xeon® Processors

Boosting the Performance of Graph
Analytics Workloads

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/products/processors/xeon.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

24The Parallel Universe

Graphs and Graph Analytics
A graph is a structured representation of a data set with relationships between elements. Each element is

represented as a vertex, and relationships between elements are shown as an edge between two vertices.

Both vertices and edges can have attributes representing either the characteristics of the element or the

relationship. The vertices to which a vertex is connected through edges are called its neighbors, and the

number of neighbors is called the degree of a vertex.

Graph analysis applications extract characteristics from a graph (or multiple graphs) that provide useful

information, e.g.:

•• Vertices with specific features

•• The shortest path between vertices

•• Vertex clusters

•• Higher-order relationships among vertices

With the growing availability of big data sets and the need to extract useful information from them, graph

analytics applications are becoming an important workload, both in the data center and at the edge.

For this study, we’ll use the GAP Benchmark Suite1, a set of common graph algorithms implemented in

C++ and optimized by researchers at the University of California at Berkeley for performance on shared-

memory multicore processors (Table 1). We evaluate GAP performance on an Intel Xeon processor-based

server and investigate opportunities to further improve performance.

Table 1. Gap Benchmark Suite overview

Algorithm Abbreviation What it Does

PageRank* pr
Calculates the popularity of a vertex by
aggregating the popularity of its neighbors

Triangle counting tc
Counts the number of triangles (three vertices
that are fully connected)

Connected components cc
Splits the graph into subgraphs with no edges
between them

Breadth-first search bfs Walks through the graph in breadth-first order

Single-source shortest path sssp
Calculates the shortest path from one vertex to
all others

Betweenness centrality bc
Calculates the centrality of a vertex, determined
by how many shortest paths go through it

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

25The Parallel Universe

Characteristics of Graph Algorithms
Graph algorithms pose challenging behavior for conventional processor architectures. A typical

operation is to fetch the attributes of all neighbors of a vertex. The list of neighbors, determined by the

topology of the graph, is usually irregular. This leads to sparse memory accesses―accessing individual

elements scattered on a large data structure. Sparse memory accesses have no locality, leading to poor

cache utilization.

Fetching the attributes of the neighbors means using indirect accesses. For example, if N is the array of

neighbors of a vertex, and A the array containing the attributes, the attribute of neighbor i is accessed by

A[N[i]]. This pattern is difficult to predict and to vectorize, which leads to an underutilization of the

available compute and memory resources.

On the other hand, graph algorithms generally have a lot of parallelism. The set of algorithms in the GAP

suite fall into two categories in terms of parallelism. The first category consists of algorithms that operate

on all vertices concurrently (pr, tc, and cc). They have abundant parallelism and can be executed across

many threads. Their parallelism is only limited by the size of the graph.

The second category is front-based algorithms where, at each iteration, a subset of vertices is analyzed

(the current front) and a new front is defined to be processed in the next iteration (bfs, sssp, and

bc). These algorithms usually start with a front containing a single vertex. The next front consists of its

neighbors, then the neighbors of these neighbors, and so on. In the first iterations, the size of the front

(and thus the parallelism that can be exploited) is limited. Also, each iteration ends with a global barrier,

which creates additional synchronization overhead. These algorithms scale worse with increasing thread

count, especially on smaller graphs.

Running Graph Algorithms on Intel Xeon Processors
Despite the challenging behavior of graph algorithms, there are ways to increase the efficiency of running

these applications on a multi-core Intel Xeon processor-based server.

Vectorization
Using vector memory instructions can increase the performance of a graph algorithm by increasing the

number of parallel load operations, which hides part of their latency. Specifically, you can use the vector

gather instruction (AVX2* and AVX-512*) to perform multiple indirect loads in one instruction. However,

the compiler isn’t always able to detect these indirect access patterns, or it can decide to not vectorize

based on its heuristics. Therefore, it might be useful to add #pragma vector always to force the compiler

to vectorize and/or to rewrite the code to make the indirect access pattern more apparent to the compiler.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

26The Parallel Universe

Figure 1 gives an example for cc. The original code on the left did not generate vector gather instructions,

while the code on the right did. This led to a speedup of 5x for cc on Intel Xeon processors.

1 Inner loop of connected components. On the left is the original code, which didn't
generate vector gather instructions. On the right is the altered code, which makes the
indirect pattern clearer and forces the compiler to vectorize.

It might also be useful to look at other vectorization opportunities, and to rewrite the code so that they can

be exploited (e.g., using intrinsics). For example, in tc, we need to count the number of matches between

the elements of two neighbor lists. Katsov describes an algorithm to speed up the matching algorithm with

SSE instructions2. We adapted this algorithm to AVX-512 and included this in the tc benchmark, leading

to a performance increase of 2.5x (code not included for brevity).3

Parallelism
The GAP benchmarks are parallelized using OpenMP*. As discussed before, there are two categories of

parallelism: vertex- and front-based. For the vertex-parallel algorithms (pr, cc, and tc), it's important

to use dynamic scheduling in the OpenMP parallel for-loops because the processing time of a vertex

depends on its neighbor count, which can differ significantly across vertices. With static scheduling,

threads that are assigned vertices with many neighbors execute longer than other threads―leading to

load imbalance. To reduce the scheduling overhead while still maintaining enough scheduling flexibility,

set chunk size to 16 or 32.

The front-based algorithms (bfs, sssp, and bc) are harder to parallelize, which means they don’t use the

full capacity of the processor (fewer threads than cores). The current front contains many fewer vertices

than the full graph, and the next front can only be processed when the current front is finished. To fully

exploit the increasing core count of Intel Xeon processor-based servers, these algorithms need to be

revised to increase their parallelism.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

27The Parallel Universe

An example of this is already implemented in bfs. Instead of looking for neighbors of the current front

and checking whether they’ve already been visited (forward algorithm), all non-visited vertices are

considered, and it is checked whether they are a neighbor of a vertex in the current front (backward

algorithm). Because there are more non-visited vertices than vertices in the front, there’s more parallelism

to exploit. The downside is that the backward algorithm sometimes does unnecessary work when most of

the non-visited vertices are not neighbors of the current front.

At each step of the algorithm, we can choose between the two methods. This choice is currently done

using the characteristics of the current front and the remaining vertices, but it should also include the

available parallelism (core or thread count) to better exploit the capacity of the processor.

Caches and Input Graphs
Graph workloads generally don’t generate cache-friendly access patterns. The one exception is when the

graph, or the most accessed data structure of the graph (e.g., the attributes of vertices), fits in the last-

level cache (which is up to 38 MB per socket on high-end Intel Xeon processors). From our experiments,

we notice that performance (expressed in GTEPS, or giga traversed edges per second) decreases with

increasing graph size, since less and less of the data fits into the cache. Because of the nature of graphs

and graph algorithms, methods to improve cache locality either don’t work well or take too much time to

reorganize the graph, often more than the algorithm itself.

Distributed Graph Processing
The GAP benchmarks are designed for single-node execution only (using OpenMP parallelization).

However, based on the insights from our study, we briefly discuss the impact on distributed graph

processing (i.e., using multiple nodes). For high-performance multinode execution, it’s crucial to minimize

the communication and maximize local data and computation. This is challenging for graph applications

because of the irregular and non-localized access pattern. Partitioning a graph to minimize the number

of edges between partitions is an NP-complete problem in itself, and often leads to more compute time

than the algorithm itself. Therefore, when you’re deploying a graph analysis algorithm on multiple nodes,

the nodes should be connected by a high-bandwidth, low-latency network such as Intel® Omni-Path

Architecture to deal with the unavoidably high amount of communication between the nodes.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

28The Parallel Universe

Boosting Performance through Analysis
Graph applications form a challenging workload for current processors because of their memory

intensiveness and irregularity. By carefully crafting their implementation and exploiting vector units and

thread parallelism, we can increase performance significantly. However, more investigation is needed,

including redesigning the algorithms to fully exploit the capabilities of an Intel Xeon processor-based

server, especially when moving to distributed processing.

References
1.	 S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP Benchmark Suite,” 2015. http://gap.

cs.berkeley.edu/benchmark.html
2.	 I. Katsov, “Fast Intersection of Sorted Lists Using SSE Instructions,” 2012. https://highlyscalable.

wordpress.com/2012/06/05/fast-intersection-sorted-lists-sse/
3.	S. Eyerman et al., “Many-Core Graph Workload Analysis,” 2018. https://dl.acm.org/citation.

cfm?id=3291686.

Blog Highlights

Read more >

Improved Parallelization, Extended Deep Learning Capabilities in
Intel® Distribution of OpenVINO™ Toolkit
SHUBHA R., INTEL CORPORATION

The latest release of Intel® Distribution of OpenVINO™ toolkit 2019 (which stands for open visual
inference and neural network optimization) unveils new features that improve parallelization,
extend deep learning capabilities, and provides support for macOS*. Get a quick view of the major
new enhancements. Then learn more about new parallelization capabilities that deliver optimal
performance for multi-network scenarios.

New Features in 2019 R1
•	 Supports 2nd generation Intel® Xeon® Processors (codenamed Cascade Lake) and provides

performance speedup for inference through Intel® Deep Learning Boost (VNNI instruction set).

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
http://gap.cs.berkeley.edu/benchmark.html
http://gap.cs.berkeley.edu/benchmark.html
https://highlyscalable.wordpress.com/2012/06/05/fast-intersection-sorted-lists-sse/
https://highlyscalable.wordpress.com/2012/06/05/fast-intersection-sorted-lists-sse/
https://dl.acm.org/citation.cfm?id=3291686
https://dl.acm.org/citation.cfm?id=3291686
https://dl.acm.org/citation.cfm
https://software.intel.com/en-us/blogs/2019/04/02/improved-parallelization-extended-deep-learning-capabilities-in-intel-distribution

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

29The Parallel Universe

Kevin O’Leary, Technical Consulting Engineer, Intel Corporation

Determining how well your application is vectorized is crucial to getting the best performance on your

system. In this article, we’ll show how to pinpoint vectorization issues, see how well you’re using your

hardware, and optimize performance using Intel® Advisor, which is available in a free, standalone
version and as part of both Intel® Parallel Studio XE and Intel® System Studio.

Intel Advisor helps you to see:
•• Which loops are vectorized

•• Data types, vector widths, and instruction sets (e.g., AVX-512, AVX2)

Gain Insights into How Well Your Application is Vectorized
Using Intel® Advisor

How Effective is Your Vectorization?

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/advisor
https://software.intel.com/advisor/choose-download#advisor
https://software.intel.com/advisor/choose-download#advisor
https://software.intel.com/advisor/choose-download#parallel-studio-xe
https://software.intel.com/advisor/choose-download#system-studio

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

30The Parallel Universe

•• How many floating-point and/or integer operations are executed

•• How many instructions were devoted to computation and how many to memory operations

•• Your register utilization

•• How to improve your vectorization

•• And much more

Getting Great Performance
To get top performance out of your application, you need information on how well you’re using all

the resources of the system. Intel Advisor’s new and improved summary view (Figure 1) gives you an

indication of how well the application is performing as a whole.

1 Intel Advisor summary view

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

31The Parallel Universe

You can see the vectorization instruction sets used and some useful performance metrics. This view

now includes a program characteristics section, which compares your relative performance to the peak

performance obtainable on your system. In Figure 1, notice that the application is using several different

instruction sets―something we should investigate. Also notice that the program is getting vectorization

efficiency of just 42%. Where did we lose 58% of our efficiency? We can drill down to investigate.

Drilling Down
You can get more detail in the survey and roofline tab (Figure 2). The survey view gives details on a loop-

by-loop basis. Focus on the loops where you’re spending the most time, and try to get these loops to

vectorize as efficiently as possible. Intel Advisor highlights whether the loop is vectorized and its efficiency.

If the compiler wasn’t able to vectorize the loop, Intel Advisor can tell you why. The performance issues

column can give you clues as to why efficiency is poor.

2 Survey and rooftop tab

Instruction Set Analysis
Instruction set analysis (Figure 3) takes a deep dive into what the compiler did to vectorize your code. It

shows the:

•• Vectorization instruction set used

•• Vector widths

•• Data type being operated on

The traits column generally indicates the memory manipulation the compiler had to do to fit your data

structure into a vector. These memory manipulations can be indicators of poor efficiency.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

32The Parallel Universe

In our example application, the main loop is using Intel® AVX-512, but the vector widths are only 128 and

256. Also, Intel Advisor gives you a warning message if your application seems to be underperforming, and

offers tuning advice (Figure 4).

3 Instruction set analysis

4 Warning message

Recompiling to enable the ZMM registers yields the instruction set analysis in Figure 5. Most of our loops

now use the complete 512 bytes of the vector registers. In our example, using the ZMM registers improved

performance. However, this isn’t always the case. It’s application-specific.

5 Instruction set analysis

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

33The Parallel Universe

Using the Middle Part of the Intel Advisor GUI
The tabs in the middle of the Intel Advisor GUI contain a wealth of program information (Figure 6).

6 Intel Advisor GUI tabs

The recommendations tab is a great way to get tips to improve performance (Figure 7). For instance, if a

loop didn’t vectorize, the vectorization tab can tell you why, along with providing code examples showing

how to fix the issue.

7 Intel Advisor recommendations tab

Code Analytics
The code analytics tab (Figure 8) gives details about what’s happening in a loop. You can see your

performance at a high level or get statistics for all operations and an instruction mix summary.

Learn
MoreIntel® ADVISOR

Optimize Code for Modern Hardware

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/advisor
https://software.intel.com/en-us/advisor

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

34The Parallel Universe

Statistics for All Operations
You can get statistics for all operations, including floating-point (FLOPS), integer (INTOP), or mixed

(INT+FLOAT) operations (Figure 9). This gives you a detailed view of some key performance metrics,

showing how many instructions are executing per second. This view also gives you metrics on how well

you’re using the memory hierarchy in this loop.

8 Intel Advisor code analytics tab

9 Statistics for all operations

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

35The Parallel Universe

How Many Operations Are You Executing?
What are the types of instructions in your loop? Are they compute- or memory-based? Intel Advisor

can answer these questions, and give you both the static and dynamic instruction count, with the static

instruction mix summary (Figure 10). You get the percentage of each instruction you’re executing, so you

can see if you’re really using the newest instructions where you should be.

10 Static instruction mix summary

Optimizing Vectorization
It’s crucial to optimize the vectorization of your program. Understanding how well your program is

vectorized by using a tool like Intel Advisor can help you make sure you’re getting the most out of

your hardware.

Related Articles
•• Intel Advisor Roofline
•• Intel Advisor Integer Roofline
•• Intel Advisor Integrated Roofline

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/intel-advisor-roofline
https://software.intel.com/en-us/articles/a-brief-overview-of-integer-roofline-modeling-in-intel-advisor
https://software.intel.com/en-us/articles/integrated-roofline-model-with-intel-advisor

Teach your
Code To Be
Smarter

Download free Intel®
Performance Libraries

and start creating better,
more reliable, and faster

applications now.

FreE Download >

Software

For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.
Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
© Intel Corporation

https://software.intel.com/en-us/performance-libraries

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

37The Parallel Universe

Bei Wang, HPC Software Engineer, Princeton University; Carlos Rosales-Fernandez, Software
Technical Consulting Engineer, Intel Corporation; and William Tang, Professor, Princeton Plasma
Physics Laboratory

The basic particle method is a well-established approach to simulating the behavior of charged particles

interacting with each other through pairwise electromagnetic forces. At each step, the particle properties

are updated according to these calculated forces. For applications on powerful modern supercomputers

with deep cache hierarchies, a pure particle method is efficient with respect to both locality and

arithmetic intensity (compute-bound).

Unfortunately, the O(N2) complexity makes a particle method impractical for plasma simulations using

millions of particles per process. Instead of calculating O(N2) forces, the particle-in-cell (PIC) method uses

a grid as the medium to calculate long-range electromagnetic forces. This reduces the complexity from

A Practical Guide

Improving Performance by Vectorizing
Particle-in-Cell Codes

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

38The Parallel Universe

O(N2) to O(N + M log M), where M is the number of grid points, generally much smaller than N. However,

achieving high parallel and architectural efficiency is a significant challenge for PIC methods due to the

gather/scatter nature of the algorithm.

Attaining performance becomes even more complex as HPC technology moves to the era of multi- and

many-core architectures with increased thread and vector parallelism on shared memory processors.

A deep understanding of how to improve the associated scalability will have a wide-ranging influence

on numerous physical applications that use particle-mesh algorithms―including molecular dynamics,

cosmology, accelerator physics, and plasma physics.

This article is a practical guide to improving performance by enabling vectorization for PIC codes.

Optimization for PIC Codes
The code example we use for this demonstration is the particle class in Athena++, an astrophysical

magnetohydrodynamics (MHD) code written in C++ 1. The particle class encapsulates basic data structures

and functions in PIC methods. Particle properties are represented by phase space position―that is,

physical space position (x1,x2,x3) and velocity (v1,v2,v3). The class functions implement three

essential particle-based operations in PIC methods:

1.	Deposit: Charge deposition from particles onto grid

2.	Move: Interpolation of grid-based fields onto particles and updating of particle properties using the
fields

3.	Shift: Move particles among processes in the distributed environment. Usually, deposit and move take
80 to 90% of the total computational time and are the focus for optimizations.

Data Layout and Alignment
Particle properties can be stored as array-of-structures (AoS) or structure-of-arrays (SoA) data layout

(Figure 1).

AoS helps to pack and unpack particles for shift, but doesn’t help to enable vectorization for deposit

and move with stride-one memory access. Since deposit and move are the hotspots of the code, we

choose SoA data layout for particle representation. Specifically, we allocate the memory with alignment

using the posix_memalign() function (Figure 2).

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

39The Parallel Universe

1 Particle representation using AoS and SoA layout

2 Allocating the memory with alignment using the posix_memalign() function

We start the optimization by checking the vectorization report of the original code for deposit.cpp and

move.cpp (Figure 3).

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

40The Parallel Universe

3 Original code for deposit.cpp (left) and move.cpp (right)

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

41The Parallel Universe

We compile the code with the Intel® C++ Compiler 19.0 and the following options: -O3 -g -qopt -report5
-xCORE-AVX512 -qopenmp simd. By default, the compiler will try to vectorize the innermost loop for

both deposit (L106) and move (L121). From the vectorization report, we see that the compiler fails to do

so because of a potential data dependency in deposit.cpp (Figure 4) and efficiency reasons in move.

cpp (Figure 5).

4 Vectorization report for deposit.cpp

5 Vectorization report for move.cpp

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

42The Parallel Universe

Explicit SIMD via OpenMP Directives
For both deposit and move, the loop count for the outermost loop (e.g., nparticle loop) is large,

while the loop count for the innermost loop is small. Therefore, the outermost loop is a more suitable

candidate for vectorization. Our first attempt is to enable vectorization for the outermost loop in both

deposit and move using OpenMP* SIMD directives. For both kernels, there's no data dependency

with respect to pointer aliasing. In considering vectorization for deposit in the outermost loop, a

potential data dependency will appear when two particles within a single vector length try to write

on the same memory location for the grid-based array (e.g., mcoup). When compiling for AVX2, it's

important to use #pragma omp ordered simd such that the loop can be safely vectorized. Since

AVX512* provides conflict detection instructions (vpconflict), this is no longer necessary for AVX512.

Also, we use aligned and simdlen clauses in the OpenMP SIMD directives to have the compiler

generate more efficient vector instructions, e.g.:

Note the current Intel C++ Compiler only allows a local variable name in the aligned clause list. Using a

class data member name directly will cause a compiler error. Our solution here is to define local variables

and assign class data member variables to local variables, e.g.:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

43The Parallel Universe

When we check the vectorization report after adding the OpenMP SIMD directives, we see that the

compiler has now successfully vectorized the outermost loop with aligned access to the particle data

(Figure 6). Unfortunately, the vectorized version is quite inefficient and doesn't give a speedup over

the scalar version due to the gather/scatter nature of the kernels. For example, the estimated potential

speedup is only 0.55 and 0.67 for deposit and move, respectively.

6 Vectorization report for loops in deposit (after adding OpenMP SIMD directives)

Strip Mining
Strip mining is a common technique to help the compiler automatically vectorize code by exposing

data parallelism2. The idea is to transform a single loop into a nested loop where the outer loop strides

through a strip and the inner loop strides all iterations within the strip (Figure 7).

Usually, the strip size is a multiple of the vector length. In some computationally-intensive loops, the strip

mining technique alone can lead to a significant performance boost. For deposit and move, replacing

the particle loop with two nested loops doesn't help with performance due to the gather/scatter. After

applying strip mining, for example, the estimated potential speedup is still only 0.52 and 0.67 for

deposit and move, respectively (Figure 8).

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

44The Parallel Universe

7 Strip mining for particle loop

8 Vectorization report for deposit and move after applying strip mining

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

45The Parallel Universe

However, strip mining can be a powerful technique when you use it as a basis for other techniques, such as

loop fission.

Loop Fission for move
The move loop includes two operations:

1.	The interpolation of grid-based fields onto particles (gather)

2.	Updating of particle properties according to the interpolated fields

While the former won't benefit from vector instructions, the latter will. The idea here is to use loop

fission to separate the non-vectorizable operation from the vectorizable one to improve performance.

At the same time, by applying strip mining with loop fission, we can significantly reduce the storage

requirement for passing local variables from the first loop to the second. Figure 9 shows the new

move implementation.

The vectorization report shows that although there is no potential speedup for the first loop, the second

achieves a 6.59 estimated potential speedup (Figure 10).

Vectorizable Charge Deposition Algorithm for deposit
Compared with move, deposit is more challenging to optimize. For the scatter operation, the

performance challenges involve not only random memory accesses and potential data conflicts, but also

increased pressure on the memory subsystem. Also, unlike move, which also includes many independent

computationally-intensive operations (i.e., updating particles properties), deposit is mostly memory

operations. A key optimization here is to reduce (or even avoid) data conflicts and regularize memory

accesses. Motivated by the portable SIMD charge deposition algorithm in the PICSAR* code3, we

implemented a vectorizable charge deposition algorithm for deposit (Figure 11).

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

46The Parallel Universe

9 New move implementation with strip mining and loop fission (part 1)

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

47The Parallel Universe

9 New move implementation with strip mining and loop fission (part 2)

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

48The Parallel Universe

10 Vectorization report for the revised move code

First, the outermost particle loop is changed to two nested loops using strip mining. In the first nested

loop (L69-L133), the particle properties are deposited on a set of local arrays with stride-one memory

access, so the compiler should have no trouble generating highly vectorized machine code.

In the second nested loop (L135-L159), the information saved in the local arrays is transferred to an

extended global grid array (L163-L205), where each grid point is associated with particle deposition

on surrounding grid points (i.e., a 27-point stencil). The price we pay here is the extra storage required

for the extended global array. The storage can be reduced if we consider the 27-point stencil as three

9-point stencils.

The grid-based values in the extended global array need to be merged at the end. Though it will be

difficult to vectorize the merging operation, the cost isn't significant, since the loop is over grid indices at

least an order of magnitude smaller than the particle one.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

49The Parallel Universe

11 Vectorizable charge deposition algorithm for deposit

Figure 12 shows the vectorization report for the new implementation. The first and second loops now

achieve 5.72 and 5.69 estimated potential speedup, respectively.

Performance Evaluation on Intel Architectures
Performance was evaluated on a 10x10x10 test grid with 100 particles per cell. We ran the simulations for

1,001 timesteps and measured the total wall clock time. We measured performance on single-core Intel®

Xeon® and Intel® Xeon Phi™ processors: “BDW” (Intel® Xeon® E5-2680 v4 processor, 2.4GHz, 2 sockets, 14

cores), “SKX” (Intel® Xeon® Gold 6148 processor, 2.40GHz, 2 sockets, 20 cores), and “KNL” (Intel® Xeon Phi™

7250 processor, 1.4GHz, 1 sockets, 68 cores) (Figure 13).

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

50The Parallel Universe

12 Vectorization report for deposit

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

51The Parallel Universe

13 Performance comparison of various optimization techniques on Intel “BDW,” “SKX,”
and “KNL” processors. The optimization techniques include SIMD, strip mining (SM),
loop fission for move (LF), and vectorizable charge deposition (VD). For each case, the
reported number is the averaged time of multiple runs on a dedicated system.

We can see that the actual performance is consistent with the estimated potential speedup from the

compiler report. On BDW, we see significant performance overhead in using SIMD for deposit. This is due

to the #pragma omp ordered simd clause ensuring the right order of writing to the grid array when

compiling with AVX2 instructions. Overall, we see that strip mining, combined with other techniques, has

led to 1.3x to 1.9x performance boost on Intel® processors.

Acknowledgements
This work was supported by the Intel® Parallel Computing Center (IPCC) program. We would like to thank

Jason Sewall at Intel for providing strong technical support for this work. We also would like to thank

Lev Arzamasskiy and Matthew Kunz in the Princeton University Department of Astrophysical Sciences for

sharing their source code.

References
1.	 https://princetonuniversity.github.io/athena/
2.	Andrey Vladimirov “Optimization Techniques for the Intel MIC Architecture, part 2 of 3: Strip-Mining for

Vectorization,” Colfax International, June 26, 2015.

3.	https://picsar.net/features/optimized-morse-nielson-deposition/

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://princetonuniversity.github.io/athena/
https://picsar.net/features/optimized-morse-nielson-deposition/

Code your
Vision

Accelerate your AI from edge to cloud.
Intel® Distribution of OpenVINO™ toolkit
speeds up computer vision workloads,

streamlines deep learning deployments,
and enables easy heterogeneous
execution across Intel® platforms.

FreE Download >

Software

For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.
Intel, the Intel logo, and OpenVINO are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
© Intel Corporation

https://software.intel.com/en-us/openvino-toolkit

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

53The Parallel Universe

Rama Kishan Malladi, Graphics Performance Modeling Engineer, and Dr. Amarpal Singh Kapoor,
Technical Consulting Engineer, Intel Corporation

Since the mid-1990s, MPI* has been the de facto standard for message passing in distributed-memory,

high-performance computing (HPC) applications. With the advent of highly parallel multi-core processors,

MPI also found its place for doing message passing within shared-memory systems.

Because there’s an overhead associated with using the MPI library, pure MPI applications running on a

group of multi-core systems experienced more overhead than was strictly necessary. A workaround for

this was to use hybrid parallelism, where MPI applications also used multithreading (e.g., with Pthreads*

or OpenMP*) to reduce the number of MPI ranks per node.

Minimal Code Changes Can Help You on the March Toward the Exascale Era

Boost Performance for Hybrid Applications
with Multiple Endpoints in Intel® MPI Library

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

54The Parallel Universe

To support hybrid parallelism, MPI version 2.1 introduced the MPI_INIT_THREAD function to

initialize the thread environment with a user-specified level of thread support. Four levels of thread

support are available:

•• MPI_THREAD_SINGLE

•• MPI_THREAD_FUNNELED

•• MPI_THREAD_SERIALIZED

•• MPI_THREAD_MULTIPLE

The first three levels are more restrictive and don’t allow threads make concurrent MPI calls. Although the

MPI_THREAD_MULTIPLE support level places no restrictions, it wasn’t widely used due to performance

loss arising from internal synchronization among threads.

One of the many enhancements in the Intel® MPI Library 2019 is scalable endpoints/multi-EP which, with

some functionality limitations in the MPI_THREAD_MULTIPLE support level, results in better performance

for hybrid applications1. Multi-EP’s novelty lies in its ability to allow multiple threads to be simultaneously

active in the MPI runtime without requiring extra synchronization. This allows a single MPI rank using

multiple threads to saturate the network bandwidth―eliminating the need for multiple ranks per node.

This article will introduce you to multi-EP, demonstrate the use of multi-EP feature in Intel MPI library, and

show the potential performance gains using a simple benchmark and a real-world application.

Multiple Endpoints
An MPI endpoint is a set of resources that support the independent execution of MPI communications2.

An endpoint corresponds to a rank in an MPI communicator. In a hybrid setting, multiple threads may be

attached to an endpoint, which lets them communicate using the corresponding endpoint’s resources. This

generates multiple streams of data for communication, which can be transmitted over the communication

medium in parallel with independent hardware context. The result is lockless data transmission from the

application layer to the threads and the MPI, OFI, and hardware layers (Figure 1).

How to Use Multi-EP in Intel MPI Library 2019
Let’s consider the code and environment changes necessary to use multi-EP. We’ll assume a thread-

compliant MPI code already exists. Since this is a non-standard MPI feature, you must set an environment

variable to activate this functionality:

$ export I_MPI_THREAD_SPLIT=1

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/mpi-library

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

55The Parallel Universe

1 Lockless transmission of messages from the application to the interconnect hardware

Multi-EP is only supported with the release_mt and debug_mt configurations of the Intel MPI Library,

which don’t have the global lock. Use one of these methods to select the correct configuration:

$ source <installdir>/intel64/bin/mpivars.sh release_mt

or

$ export I_MPI_LIBRARY_KIND=release_mt

Enable multi-EP support within the PSM2 library, which is disabled by default. Also, specify the threading

runtime to be used (the OpenMP runtime has special support for multi-EP; however, any other threading

runtime may be used). Here’s how to do it:

$ export PSM2_MULTI_EP=1

$ export I_MPI_THREAD_RUNTIME=openmp

Request the MPI_THREAD_MULTIPLE level of support via the MPI_INIT_THREAD function inside the

user code. Duplicate the MPI_COMM_WORLD communicator as many times as the number of threads per

rank. This step ensures lockless transmission of messages. Use the new communicator in the subsequent

MPI function calls.

Here’s the environment variable that controls the maximum number concurrent threads per MPI rank:

$ export I_MPI_THREAD_MAX=n

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

56The Parallel Universe

For the OpenMP runtime, you can use the OMP_NUM_THREADS environment variable instead of 		

I_MPI_THREAD_MAX.

Partition the data being handled by a rank so that each thread originating from that rank has ownership

over a certain subset of data (owned by that rank) and acts only upon that data (input and output).

Consequently, the number of MPI function calls increases, but the amount of data being transmitted in

each function call decreases, proportionately to the number of threads per rank.

Note that there are some limitations when you use multi-EP compared to what’s allowed with the 		

MPI_THREAD_MULTIPLE support level (for details, see the online documentation).

Benchmark Application
We used the MPI_ALLREDUCE blocking collective function here to reduce (sum) an array of 2,097,152

integers across multiple nodes using the pure MPI approach as well as the hybrid approach with multi-EP

(Figures 2 and 3). OpenMP is used in the hybrid approach. The reduction operation was repeated 100

times to get time estimates that were free of noise. The application was written in Fortran* and compiled

with the 2019.0 versions of the Intel® Fortran Compiler and Intel® MPI Library.

2 MPI_ALLREDUCE using pure MPI

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/mpi-developer-guide-linux-multiple-endpoints-support
https://software.intel.com/en-us/fortran-compilers

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

57The Parallel Universe

Figure 3 shows the difference from using MPI_ALLREDUCE for the multi-EP case. As mentioned before,

MPI_COMM_WORLD is duplicated as many times as required and the reduction call is made inside a parallel

region with clear thread-based ownership of mydata and myre. The offset is a matrix variable containing

the start and end ownership indices for every thread. Also, note that the number of MPI_ALLREDUCE calls

in the pure MPI case is (niter × MPI ranks), while in the multi-EP case it’s (niter × MPI ranks ×

threads per rank).

The MPI environment was according to the steps mentioned previously and the application was launched

with this command:

$ mpiexec.hydra –n –ppn 1 –f hostfile –prepend-rank –genv OMP_NUM_THREADS NT ./multiEP

We use Intel® Trace Analyzer and Collector to profile this application and verify the rank and thread

decomposition (for details, see the online documentation).

3 MPI_ALLREDUCE with multi-EP

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/trace-analyzer
https://software.intel.com/en-us/trace-analyzer/documentation

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

58The Parallel Universe

For the profiles shown in Figures 4 and 5, we use only four nodes, with one rank per node and two

threads per rank. The number of repetitions was set to one to make it easier to view the profiles in a

static image.

4 Load balance with four nodes, one rank per node, and two threads per rank

5 Event timeline showing function invocations in every rank and its threads as a function
of time

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

59The Parallel Universe

Figure 4 shows that every rank did spawn two threads (T0 and T1), as requested. For the small problem

being run here, there’s significant serial execution (shown in blue). Also, the load balance across threads of

the same rank isn’t very good. However, the amount of work being done by the first thread of each rank

seems to be relatively balanced. We see the same for the second thread of each rank.

Figure 5 shows the timeline along the horizontal and the ranks (with threads) along the vertical. The

application starts off running serial code sections in every rank, before duplicating communicators for

each thread, and finally invoking MPI_ALLREDUCE across all ranks and their threads. Each rank then exits

by calling MPI_FINALIZE outside the parallel region.

Figure 6 shows the speedup in MPI_ALLREDUCE as a function of thread count for a distributed run with

16 nodes and one rank per node. Peak performance occurs with 16 threads, indicating this as the optimal

thread count for the system under test (a cluster of Intel® Xeon Phi™ 7250F processors connected via

Intel® Omni-Path).

6 Thread scaling with multi-EP

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

60The Parallel Universe

Multi-EP Use in a Quantum Chromodynamics (QCD) Code
Using multi-EP in real-world applications is quite simple. Figure 7 shows an example of a QCD application

with a halo exchange of boundary data between the nodes (ranks). The communication pattern in the

QCD code (Wilson-Dslash operator of a CG solver) is the nearest-neighbor point-to-point (send-recv)

exchange in the X, Y, Z, and T directions. The figure shows the message exchange in the Y direction, with

the multi-EP implementation using two threads per MPI rank. The lattice is partitioned into four ranks,

shown as ranks 0-3, and the communication between these ranks is shown in blue and red corresponding

to send and receive of halo exchange boundary data (Figure 8). The multi-EP version of the code using

eight threads is shown in Figure 9. A pictorial representation of multi-EP, shown in Figure 10, demonstrates

using two threads per rank for multi-EP MPI message passing. The threads, shown as T0 and T1,

partition the MPI send and receive and perform this communication in parallel, increasing the network

bandwidth utilization.

7 Y direction communication without and with multi-EP on a 16*8*Z*T QCD lattice

8 Y direction (up and down) communication without multi-EP using eight threads

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

61The Parallel Universe

9 Y direction (up and down) communication with multi-EP using eight threads

10 Relative performance improvement using multi-EP across different thread counts and
node scaling

The performance gain using multi-EP across various threads and node counts is shown in Figure 10. The

experiments/runs were done to study the performance gains with multi-EP using 1 to 8 threads and on

node counts of 2 to 16 for a lattice size of 64*64*64*16. The system under test was a cluster of Intel®

Xeon Phi™ 7250F processor nodes connected via Intel® Omni-Path interconnect.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

62The Parallel Universe

Better Performance for Hybrid Applications
The multi-EP optimizations in Intel MPI Library 2019 result in better performance for hybrid

applications. Using this new feature requires code changes and environment-related settings, but as

we’ve shown, the changes are minimal and don’t alter the overall program structure. As we march

toward the exascale era, features like multi-EP will become necessary to achieve the best performance

at scale from hybrid architectures. 

Get Started
•• Learn more
•• Download Intel MPI Library

 References
1.	Intel MPI Library Developer Guide for Linux OS. https://software.intel.com/en-us/mpi-developer-

guide-linux-multiple-endpoints-support
2.	Enabling MPI Interoperability Through Flexible Communication Endpoints. James Dinan, Pavan Balaji,

David Goodell, Douglas Miller, Marc Snir, and Rajeev Thakur. EuroMPI 2013.
3.	Intel Trace Analyzer and Collector. https://software.intel.com/en-us/trace-analyzer
4.	Intel® Omni-Path Architecture Multiple Endpoints. James Erwin, Edward Mascarenhas, and Kevin

Pine - Intel. IXPUG September 2018. https://www.ixpug.org/resources/download/intel-omni-path-
architecture-multiple-endpoints

5.	Multiple Endpoints for Improved MPI Performance on a Lattice QCD Code - Larry Meadows, Ken-
Ichi Ishikawa, Taisuke Boku, Masashi Horikoshi. HPC Asia 2018 WS, January 31, 2018, Chiyoda,
Tokyo, Japan.

Intel® MPI Library Free
DownloadFlexible, Efficient, and Scalable Cluster Messaging

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/mpi-library
https://software.intel.com/en-us/mpi-library/choose-download
https://software.intel.com/en-us/mpi-developer-guide-linux-multiple-endpoints-support
https://software.intel.com/en-us/mpi-developer-guide-linux-multiple-endpoints-support
https://software.intel.com/en-us/trace-analyzer
https://www.ixpug.org/resources/download/intel-omni-path-architecture-multiple-endpoints
https://www.ixpug.org/resources/download/intel-omni-path-architecture-multiple-endpoints
https://software.intel.com/en-us/mpi-library
https://software.intel.com/en-us/mpi-library

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

63The Parallel Universe

Ramya Chandrasekaran and Thorsten Moeller, Product Marketing Engineers, Intel Corporation

Embedded software development has evolved dramatically over the last few years as applications

like IoT, automotive, retail, healthcare, and industrial have grown exponentially. Software development

challenges have grown too, as teams cope with shrinking timelines, scarce resources, and rigorous

requirements for quality and performance optimization.

One way to help meet these challenges is Intel® System Studio, which is specifically designed―and

constantly updated―to help address the complexity. This easy-to-use, comprehensive, cross-platform

tool suite simplifies system and IoT application development and helps developers quickly and efficiently

move from prototype to product. It includes optimizing compilers, highly tuned libraries, analyzers,

debuggers, and code wizards and samples that make it easy to get started.

How to Debug, Analyze, and Build Applications More Efficiently using Intel® System Studio

Innovate System and IoT Apps

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/system-studio

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

64The Parallel Universe

The goal of Intel System Studio is to enhance:

•• Efficiency. Boost performance and power efficiency for diverse workloads across Intel® processors (CPU
and GPU/Intel® Processor Graphics).

•• Productivity. Find code issues fast and move from prototype to product faster. Integrate smart
capabilities with access to 400+ sensors.

•• System reliability. Improve system bring-up, use deep platform insight and sophisticated trace
capabilities.

We can break the tools into three broad categories: build, analyze, and debug (Figure 1).

1 Intel System Studio includes tools to build, analyze, and debug embedded code.

Tools to Build
Building your project is the first step to go from prototype to production. Intel System Studio’s building

tools include:

•• Intel® C++ Compiler: Plugging right into popular development environments like Eclipse* and Microsoft
Visual Studio*, Intel® C++ Compilers are source- and binary-compatible with other compilers, such as
Visual C++* for Windows* and GNU* Compiler Collection (GCC) for Linux*, macOS*, and Android*.

•• Intel® Math Kernel Library: Speed computations through highly-optimized, threaded, and vectorized
math functions. Provides key functionality for dense and sparse linear algebra (BLAS, LAPACK,
PARDISO), FFTs, vector math, summary statistics, splines, and more. It also dispatches optimized code
for each processor automatically without the need to branch code.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/mkl

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

65The Parallel Universe

•• Intel® Data Analytics Acceleration Library: Helps applications deliver better predictions faster. This
tool optimizes data ingestion and analytics together for the highest performance. Supports offline,
streaming, and distributed usage models to meet a range of application needs. It splits analytics
workloads between edge devices and cloud to optimize overall application throughput.

•• Intel® Integrated Performance Primitives: Accelerates signal and image processing, data processing,
and cryptography tasks. Multi-core, multi-OS, and multi-platform-ready. Easy-to-use, production-ready
APIs improve application development and performance.

•• Threading Building Blocks: Use threading techniques to leverage multicore performance and
heterogeneous computing for C++. Parallelize computationally-intensive work across CPUs and GPUs to
deliver better solutions.

•• OpenCL™ tools: Intel is a strong supporter of OpenCL software technology. The Intel® SDK for
OpenCL™ Applications is a comprehensive development environment for Intel® platforms. It supports
offloading compute-intensive parallel workloads to Intel® Graphics Technology using an advanced
compiler for OpenCL kernels, runtime debugger, and code performance analyzer.

•• IoT connection tools: The IoT connection tools are a collection of libraries essential to any IoT solution
developer. The tools take advantage of tight integration with the IDE interface and project templates.
They provide standardized, open-sourced abstraction libraries and tools. And they include 400+ sensor
libraries and advanced cloud connectors for easy and seamless device programming.

Tools to Analyze
Intel System Studio offers several analysis tools to fit your specific use case. To resolve your

performance issues, you may end up using more than one analysis tool to pinpoint problems and

optimize your system.

•• Intel® VTune™ Amplifier: Offers a range of analysis types to fit multiple use cases on local or remote
systems. Examine hotspots in your code, discover memory issues, and optimize threading across
multiple CPU cores. It helps accurately profile C, C++, Java*, Python*, Go*, or any mix and optimize CPU/
GPU, threading, memory, cache, storage, and more.

•• Intel® Inspector: This tool helps you find and debug memory leaks, corruption, data races, and
deadlocks.

•• Energy Analysis and Intel® SoC Watch: These tools collect metrics you can use to analyze power
consumption and identify system behaviors that waste energy. View the results as CSV files or
graphically with Intel VTune Amplifier.

•• Intel® Advisor: Helps identify areas where your application can benefit from vectorization and
threading. It also analyzes memory patterns and helps quickly prototype threading.

•• Intel® Graphics Performance Analyzers: Provide insightful analysis of real-time hardware metrics. Spot
difficult CPU/GPU interaction issues.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-daal
https://software.intel.com/en-us/intel-ipp
https://software.intel.com/en-us/intel-tbb
https://software.intel.com/en-us/intel-opencl
https://software.intel.com/en-us/intel-opencl
https://software.intel.com/en-us/intel-opencl
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/inspector
https://software.intel.com/en-us/advisor
https://software.intel.com/en-us/gpa

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

66The Parallel Universe

Tools to Debug
As systems and IoT devices have become more sophisticated, they’ve also become more complicated to

implement and maintain. Code bases―including BIOS/UEFI, firmware, operating system layers, and device

drivers―have grown so large and complex that just navigating through instruction trace data to find the

root cause of a bug is difficult and time-consuming.

Intel® System Debugger can help build reliable code. In early stages of development, it provides system

debug and system trace capabilities to help build a stable platform. This full-featured, source-line debugger

enables deep analysis of BIOS and UEFI* code, system-on-chip (SoC) peripheral registers, operating system

kernels, and device drivers with full operating system awareness. It also provides system trace capabilities

to capture, view, and correlate trace information for software, firmware, and hardware components.

You can collect, export, and analyze trace data collected by Intel® Trace Hub from sources like BIOS,

Intel® Management Engine (Intel® ME), Intel® Converged Security and Management Engine (Intel® CSME),

Architecture Event Trace (AET), Microsoft Event Tracing for Windows* (ETW*), and more. These events can be

extracted via several mechanisms, including JTAG, system memory, or through a USB connection. Analyzing

Intel Trace Hub events from multiple platform sources helps you determine root causes of bugs quickly.

The Intel® Debug Extensions for WinDbg*, another feature of Intel System Studio, is the first solution

capable of debugging features such as Winload, HAL initialization, Bitlocker, or system recovery directly

on the target. You no longer need to reproduce sleep or hibernation issues with the WinDbg* kernel agent

enabled. The only requirement is a functional JTAG connection (e.g., over USB/DCI) and the debug tool can

connect at any time.

The debugger enables low-cost, closed-chassis debug on production systems/devices and a debug

engineer will gain direct access to failing production system/device where it was previously impossible.

Innovate System and IoT Apps
Intel System Studio helps you deal with squeezed timelines, limited resources, and rigorous optimization

needs during all software development stages―from early system bring-up to application optimization

and deployment. Solutions that benefit from using Intel System Studio include digital security and

surveillance, 5G, networking, industrial, data storage, healthcare, retail, smart homes/cities/buildings,

automotive, office automation, and more.

Get Started
•• Get a free download of Intel System Studio 2019
•• Learn more about Intel System Studio

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/system-studio/features/debug
http://intel.ly/2CEKGRC
https://software.intel.com/system-studio

Supercharge
Python*

PErformance
Free Download >

For more complete information about compiler optimizations, see our Optimization Notice at
 software.intel.com/articles/optimization-notice#opt-en.
Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
© Intel Corporation

Get your hands on
Intel® Distribution for Python*

Software

https://software.intel.com/en-us/distribution-for-python

Software

The Parallel
Universe

		 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. § For
more information go to www.intel.com/benchmarks.

		 Performance results are based on testing as of October 1, 2018, and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be
absolutely secure.

		 For more information regarding performance and optimization choices in Intel® Software Development Products, see our Optimization Notice: https://software.intel.com/articles/optimi-
zation-notice#opt

		 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system
configuration. No computer system can be absolutely secure. Check with your system manufacturer or retaile. No license (express or implied, by estoppel or otherwise) to any intellectual
property rights is granted by this document.

		 Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well
as any warranty arising from course of performance, course of dealing, or usage in trade.

		 This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel repre-
sentative to obtain the latest forecast, schedule, specifications and roadmaps.

		 The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are available
on request.

		 Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.
		 Copyright © 2019 Intel Corporation. All rights reserved. Intel, Xeon, Xeon Phi, VTune, OpenVINO, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
		 OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.
 		 * Other names and brands may be claimed as the property of others.		 Printed in USA		 0419/SS	 	 Please Recycle

