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Happy New Year...and May 2019 Bring You High Performance
Welcome to our first issue of 2019. I didn’t make any bold predictions at the start of 2018—
just that the parallel computing future is heterogeneous. However, this trend was already well 
underway, and will continue to gain momentum this year. It wasn’t exactly a bold prediction, 
and I won’t make any bold predictions this year either. I’ll just call out a few trends I’m watching.

The open source community initiative on software-defined visualization (SDVis.org) 
continues to demonstrate that the CPU is better for large-scale rendering than GPU-based 
solutions, which suffer from memory limitations and high cost. This is the topic of our feature 
article, Intel® Rendering Framework Using Software-Defined Visualization. The advantage 
of SDVis isn’t news to the film industry, which has been doing CPU-based rendering for many 
years, but SDVis is spreading to other computational domains where visualization of ever-
larger datasets is needed.

This brings us to another trend I’m watching closely: “The Convergence of HPC, BDA, 
and AI in Future Workflows” (a talk I gave recently at the 2018 New York Scientific Data 
Summit at Brookhaven National Laboratory). Trish Damkroger, Intel’s vice president and 
general manager of Extreme Computing, published a similar viewpoint recently on Top500.
org: The Intersection of AI, HPC, and HPDA: How Next-Generation Workflows Will Drive 
Tomorrow’s Breakthroughs. The line between traditional high-performance computing, 
artificial intelligence, and big data analytics is blurring, so I asked the Intel Data Center Group 
to provide a guest commentary: Unifying AI, Analytics, and HPC on a Single Cluster.

As I’ve said before, heterogeneous parallelism is the future, and FPGAs are getting attention 
as an offload device for software acceleration. James Reinders, our editor emeritus, published 
several articles last year on programming FPGAs. In this issue, Professor Martin Herbordt 
from Boston University shares some of his best practices for OpenCL programming on 
FPGAs. In Advancing OpenCL™ for FPGAs, he walks us through the optimization of some 
common numerical algorithms.

3The Parallel Universe

LETTER FROM THE EDITOR
Henry A. Gabb, Senior Principal Engineer at Intel Corporation, is a longtime high-performance and 
parallel computing practitioner who has published numerous articles on parallel programming. He 
was editor/coauthor of “Developing Multithreaded Applications: A Platform Consistent Approach” 
and program manager of the Intel/Microsoft Universal Parallel Computing Research Centers.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
http://sdvis.org/
https://www.bnl.gov/nysds18/files/talks/session3/Gabb-keynote-nysds18.pdf
https://www.bnl.gov/nysds18/files/talks/session3/Gabb-keynote-nysds18.pdf
https://www.bnl.gov/nysds18/index.php
https://www.bnl.gov/nysds18/index.php
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We round out this issue with three articles on code optimization: Parallelism in Python*, 
Remove Memory Bottlenecks Using Intel® Advisor, and MPI-3 Non-Blocking I/O 
Collectives in Intel® MPI Library. 

Future issues of The Parallel Universe will feature articles on using just-in-time compilation to 
optimize Python code, new features in Intel® Software Development Tools, performance case 
studies, and much more. Be sure to subscribe so you won't miss a thing.

Also, don’t forget to check out Tech.Decoded for more information on Intel solutions for code 
modernization, visual computing, data center and cloud computing, data science, and systems 
and IoT development.

Henry A. Gabb 
January 2019

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.seek.intel.com/parallel-universe-magazine
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Rob Farber, Global Technology Consultant, TechEnablement

Software-defined visualization (SDVis) is akin to software-defined networking, software-defined 

infrastructure, and other initiatives Intel is taking to maximize the benefits―and inherent performance―

of modern Intel® Xeon® processors with software that takes advantage of high thread count and data 

parallelism. The performance is there, and the advantages over dedicated devices with limited available 

memory are manifold―including the ability to use ever-improving advanced algorithms that exploit the:

•• Larger memory capacity of the processor

•• Flexibility and easy upgradability of software versus hardware replacement

•• Overall cost savings during procurement and improved total cost of ownership over the lifespan of the 
hardware

Why Intel® Xeon® Processors Excel at Visualization

Intel® Rendering Framework using 
Software-Defined Visualization

https://software.seek.intel.com/parallel-universe-magazine
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Performance and Scalability that have Redefined Visualization
Jim Jeffers, senior director and senior principal engineer for Intel’s visualization solutions, notes, “With the 

Intel® Rendering Framework, all the work is being done on the CPU, while users are getting the same―

or better―experience than with today’s dedicated graphics hardware.” The Intel Rendering Framework 

provides both scalable and interactive ray tracing and OpenGL* visualization via the Intel® Embree, Intel® 
OSPRay, and Intel® OpenSWR libraries. Plus, the Intel Rendering Framework now includes the new Intel® 
Open Image Denoise library.

Not surprisingly, modern high-throughput processor cores packaged in multi- and many-core processors 

can execute many tasks interactively, and with performance unequaled by earlier generations of 

processors. Jeffers points out that “Benchmarks show a 100x increase in rendering performance 

compared to what was available in 2016 when rendering OpenGL triangle-based images with Mesa."*

This level of performance has redefined scientific visualization and is making significant inroads into the 

cinematic and professional visualization market segments (Figure 1). Jeffers points out that with its ability 

to exploit the available CPU memory (commonly 192 GB or more for a processor versus 16 GB for a high-

end GPU), the Intel Rendering Framework can deliver the same or better performance with fidelity that a 

GPU can’t match. That, coupled with the ability to run and visualize anywhere, regardless of the scale of 

the visualization task and without requiring specialized hardware for interactive response, is the reason 

high-performance computing (HPC) centers no longer need to procure GPUs for visualization clusters.

1 The Intel® Rendering Framework with SDVis technology supports rendering on 
platforms of all sizes including cloud and HPC clusters. 

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
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The Primary HPC Visual Analysis Approach for Many
Five years ago, you never would have heard an HPC user say, “I prefer rendering my images on CPUs.” 

However, that mindset changed as CPU-based interactive and photorealistic rendering supplanted GPUs 

in many HPC centers. Paul Navrátil, director of visualization at the Texas Advanced Computing Center 

(TACC), highlights TACC’s commitment by pointing out that “CPU-based SDVis will be our primary visual 

analysis mode on Frontera*, leveraging the Intel Rendering Framework stack.” Frontera is expected to be 

the fastest academic supercomputer in the U.S. when it becomes operational in 2019.

In a word, the scalability is “outstanding” as demonstrated by a 1.1 trillion triangle OpenGL hero 

benchmark by Kitware1  on the Trinity* supercomputer at Los Alamos National Laboratory. However, it 

doesn’t take a supercomputer to run SDVis. The integration of Intel Rendering Framework components 

such as OSPRay into Paraview makes exploring the benefits of ray tracing easy on most hardware 

platforms. David DeMarle, principal engineer at Kitware, notes that with the Intel Rendering Framework, “A 

one-line change is all that is required for VTK* and ParaView* users to switch between OSPRay ray tracing 

and OpenGL rendering.”

Traditional Batch and New In Situ and In-Transit 	
Visualization Workflows
The software-defined nature of the Intel Rendering Framework means that scientists can now 

perform in situ rendering, where visualization occurs using the same nodes as the computation. In situ 

visualization has been identified as a key technology to enable science at the exascale.2 Jeffers points 

out, “As we move to exascale, we have to manage exabytes of data. While the data can be computed, 

the I/O systems aren’t getting there to move the data. Hence, in situ. Otherwise, it can take days, weeks, 

or months to visualize.” He likes to summarize this by stating, “A picture is worth an exabyte.”

A Path to Exascale Visualization
As part of a U.S. Department of Energy (DOE) multi-institutional effort, and in collaboration with private 

companies and other national labs, Argonne National Laboratory is working to leverage the SENSEI* 

framework to help people prepare for the arrival of Aurora*, a new Intel-Cray system. Aurora will be 

capable of delivering more than an exaflop of floating-point performance. SENSEI is one example of 

a portable framework that enables in situ, in-transit, and traditional batch visualization workflows for 

analysis and scalable interactive rendering of the huge data volumes generated when using an exascale 

supercomputer. 

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
http://www.sensei-insitu.org/
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Depending on the application, researchers sometimes may prefer to dedicate more supercomputer nodes 

to a computationally expensive simulation, while using a smaller number of nodes for rendering. This 

asymmetric load balancing is called in-transit visualization. Unlike in situ visualization that renders data in 

place on the node, in-transit visualization does incur some overhead as data must be moved across the 

communications fabric between nodes. The payoff is the additional compute power that can be dedicated 

to the simulation. Both in-transit and in situ workflows keep the data in memory and avoid writing to 

storage. Joseph Insley, Visualization and Analysis Team lead at the Argonne Leadership Computing 

Facility, points out, “With SENSEI, users can utilize in situ and in-transit techniques to address the widening 

gap between flop/s and I/O capacity, which is making full-resolution, I/O-intensive post hoc analysis 

prohibitively expensive, if not impossible.” 

Visualization for All, No Special Hardware Required
A big advantage of CPU-based rendering is that no special hardware is required, which means it can 

be used by nearly everyone on most computational hardware, from laptops and workstations to 

organizational clusters and leadership-class supercomputers, and even in the cloud.

Interactive photorealistic ray tracing can occur on as few as eight Intel® Xeon® Scalable 8180 processors 

or scale to big data, high-quality rendering using in situ nodes.3,4,5,6 Jeffers notes that the interactive 

performance delivered by the Intel Rendering Framework, and photorealistic rendering with the freely 

available OSPRay library and viewer, “address the need and create the want.” Eliminating the requirement 

for specialized display hardware means even exabyte simulation data can be “visualized anywhere.” Users 

appreciate how they can view results on their laptops and switch to display walls or a fully immersive cave.

The ability to run and visualize anywhere using CPUs―regardless of the scale of the visualization task and 

without requiring specialized hardware for interactive response―is the reason HPC users are now using 

CPUs for visualization tasks. The integration of the Intel Rendering Framework SDVis capabilities into the 

popular VisIt*7  and ParaView* viewers, along with frameworks like SENSEI*, gives everyone the ability to 

perform analysis and use either OpenGL rendering or create up to photoreal images. 

Figure 2 summarizes the advantages of software- versus hardware-defined visualization.

Openvino™ toolkit
Develop Multiplatform Computer Vision Solutions

Free
Download

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-platform.html
https://software.intel.com/en-us/openvino-toolkit/choose-download
https://software.intel.com/en-us/openvino-toolkit/choose-download
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Optimize Code for Modern Hardware

2 Advantages of software- versus hardware-defined visualization

From HPC to Professional Rendering Applications
Jeffers observes that one of the key factors driving SDVis adoption is the visual fidelity of the ray tracing. 

Basically, users get up to photorealism because the software is able to model the physics of light using 

both serial and parallel processing on the CPU, along with scalable, interactive performance.

The cross-market appeal of the Intel Rendering Framework with SDVis is clear. As Jeffers observes, “There 

is a real pull from submarkets like CAD and automotive. Photorealism is extremely important in improving 

‘virtual’ vehicle design and manufacturing from commercial airplanes to military vehicles. Essentially, 

decisions can be made about what vehicle to build without ever having to build it. Meanwhile, there is 

increasing pull from adjunct markets that include offline and interactive rendering for animation and 

photoreal visual effects.”

It’s All About Separation of Costs 
From a software perspective, the Intel Rendering Framework provides the tuned and optimized low-

level operations. This is why Jeffers claims it delivers great performance to the applications developer by 

simply calling the rendering APIs. The scalability to run in distributed environments is also there, which 

has enabled the big advance in professional rendering to “interactive”8  rendering and ray tracing with full 

visual effects on huge, complicated data sets. This is why movie studios run on render farms containing 

thousands of Intel® CPUs.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
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Jeffers likes to point out the differences between the animation used in the three-time Academy Award* 

nominated 1989 film The Little Mermaid and the recent Moana image shown below to highlight the 

improvements enabled by ray tracing using the Intel Rendering Framework. Previously, an overnight 

rendering workflow would yield a few seconds of video. The 160-billion-object Moana island scene, 

shown in Figure 3 (recently made publicly available courtesy of Walt Disney Animation Studios to enable 

research and best industry practices), was rendered live using Intel OSPRay and Intel Embree ray tracing 

libraries along with the new Intel Open Image Denoise library. System memory capacity was important, 

since the rendering process consumed more than 100 GB.

3 This image containing 160 billion objects was ray traced live using the Intel Rendering 
Framework and the Intel Open Image Denoise Library (Image courtesy Walt Disney 
Animation Studios).

Looking to the Future
Jeffers is also excited about the convergence of artificial intelligence (AI) and the ray tracing capabilities of Intel 

OSPRay and Intel Embree. For example, AI was used to define the believable movement of the robots that were 

rendered using these libraries in the movie Pacific Rim (Figure 4). Intel Xeon Scalable processors give the Ziva* 

AI software the performance needed to generate the real-time characters that can progressively learn body 

movements, while also easily applying features and behaviors from one character to another.9

When asked if photorealist animation will replace actors, Jeffers replied that he thinks humans are 

necessary to provide the emotional impact a movie demands. However, the technology may advance to 

the point where voice-overs and actor overlays will become more important as the visual fidelity of state-

of-the-art rendering technology continues to improve.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.disneyanimation.com/technology/datasets
http://www.openimagedenoise.org/
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4 AI joins with ray tracing to deliver more lifelike characters in the movie Pacific Rim (Image 
courtesy Intel)

CPU-Based Visualization 
As mentioned, Intel has initiatives aside from the Intel Rendering Framework to exploit the serial and 

parallel performance of modern many- and multi-core Intel Xeon processors to replace dedicated 

hardware devices. However, the spectacular images created by the Intel Rendering Framework clearly 

demonstrate the appeal of CPU-based visualization. The software libraries are open-source and available 

for download.

Users who simply wish to experience SDVis without doing any development can download the ParaView* 

or VisIt* applications or the recently announced OSPRay Studio viewer. Meanwhile, HPC developers can 

use a framework like SENSEI* to exploit in situ and in-transit visualization to run at scale.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://ai.intel.com/ziva-pacific-rim/
https://ai.intel.com/ziva-pacific-rim/
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Organizations looking to experience the benefit of SDVis can look to Intel Select Solutions for 
Professional Visualization for verified hardware and software solutions that combine the latest Intel 

Xeon Scalable processors with other technologies such as Intel® Omni-Path Architecture, Intel® SSDs, 

and the OpenHPC cluster software stack.

Here’s where application developers can get more information:

•• The Embree Ray Tracing Kernel Library
•• The OSPRay Distributed Ray Tracing Infrastructure
•• The OpenSWR OpenGL Software Rasterizer
•• The Intel Open Image Denoise Library will soon become available at https://openimagedenoise.github.io/. 

While not the point of this article, interested readers can look to other Intel initiatives such as Intel 
Software Defined Networking and Intel Software Defined Infrastructure to see how Intel Xeon 

Scalable processors are being used to replace other dedicated pieces of hardware.

Rob Farber is a global technology consultant and author with an extensive background in HPC and in 

developing machine learning technology that he applies at national labs and commercial organizations. 

Rob can be reached at info@techenablement.com.
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Allene Bhasker and Keith Mannthey, Solution Architects, Data Center Group, Intel Corporation

The next few years will be remembered as the time when artificial intelligence (AI)―including machine and deep 

learning―became mainstream all over the enterprise. One study shows that more than 60% of enterprises are 

currently putting AI solutions in place, with predictive analytics as the most common application.

Hosting Strategy for AI, Analytics, and HPC Workloads
As IT organizations decide where to host AI workloads and AI-driven analytics, many consider purpose-

built servers equipped with specialized accelerators and GPUs. Those who are forward-looking may think in 

terms of clusters of these servers to handle the expected growth of AI’s role in their day-to-day operations. 

A broader perspective still notes that AI, analytics, and HPC workloads all run well on similar cluster 

hardware, based on robust individual cores and high-speed interconnects.

Maximizing Efficiency and Lowering Costs for Tomorrow’s Enterprise

Unifying AI, Analytics, and HPC on a Single Cluster
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At this point, a common question arises: “What would it take to run AI, analytics, and HPC workloads 

together on the same cluster?” This approach is particularly attractive if you consider a business 

process that uses all three types of processing. For example, running simulation and modeling, data 

cleaning, and AI-based inference steps all on the same cluster is far more efficient than maintaining 

separate clusters.

Convergence onto a single cluster also has obvious cost benefits. Server utilization is higher with a 

single cluster, so you can buy fewer servers. A simpler environment is less expensive to configure and 

maintain―and lets you avoid expensive requirements to move and stage data among multiple clusters. 

Integrating these workloads onto a single environment also helps reduce latency, something that gets 

more important every year as real-time requirements emerge.

Build AI and Analytics Capabilities on the Existing HPC Platform
The approach to convergence focuses on adding AI and analytics capabilities on top of an HPC cluster. 

The Intel HPC Platform Specification defines requirements for a base cluster solution that includes 

common industry standards and practices for Intel-based solutions (Figure 1). This provides a common 

and consistent interface for HPC applications, and many commercial HPC software vendors have 

validated application support of solutions compliant with this platform specification. 

1 Generalized Intel solution stack for converged clusters

https://software.seek.intel.com/parallel-universe-magazine
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Beyond the base definition, additional requirements for specific capabilities and functionalities are 

described in distinct sections. Compliant solutions are composed by meeting the requirements of 

the base solution plus the desired capability layers. This streamlines introduction or expansion of 

capabilities while still maintaining the interoperability with applications targeting the platform. The 

path to a converged platform involves adding new sections to the Intel HPC Platform Specification that 

describe the requirements for AI and analytics capabilities.

Combining Solutions Built for Different Customer Environments
Intel is developing a series of solution architectures to help define requirements that converge AI, 

analytics, and HPC workloads into a single, unified cluster. Making multiple resource managers work 

together smoothly is a daunting challenge. And the solutions implement various approaches to 

integrating capabilities such as maintaining job queues and scheduling jobs in a centralized way for all 

types of workloads.

•• Solution 1: Extend HPC Batch Schedulers. This approach extends batch schedulers using wrapper 
scripts that submit jobs on behalf of AI and analytics workloads. This simple approach has almost no 
systems overhead.

•• Solution 2: Univa* Grid Engine and Resource Broker. For shops that are already using Univa Grid 
Engine*, this solution uses Univa Resource Broker* to integrate Apache Mesos*-compatible AI and 
analytics software.

•• Solution 3: Apache Mesos and Batch Schedulers. This forthcoming solution architecture 
integrates Apache Mesos and batch schedulers to work together seamlessly across HPC, AI, and 
analytics workloads.

The solution architectures are flexible in terms of supporting different ways of provisioning, whether 

on bare metal or with virtual machines and containers on hybrid clouds. They also include storage 

abstraction to unify data across object stores, providing a single source of data to be used in place, 

without large-scale data movement. Intel is involved with enablement activities across the software 

ecosystem, including open-source contributions and co-engineering with technology providers. This 

optimization work is key to making sure that all three types of workloads benefit from the full range of 

Intel® platform features for performance and security.

To make it easier to deploy converged cluster solutions, Intel makes pre-optimized, integrated 

infrastructure available through participating OEMs as Intel® Select Solutions. Because these 

architectures are validated in advance, mainstream enterprises now have a clear path to the efficiency 

and cost benefits of converged clusters for tomorrow’s AI, analytics, and HPC workloads.
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Martin C. Herbordt, Professor, Department of Electrical and Computer Engineering, 
Boston University

Field programmable gate arrays (FPGAs) are capable of very high performance, especially power-

performance. This is perhaps not surprising. After all, FPGA hardware itself is malleable―configurable to 

match the application rather than the other way around. Also not surprising is that this additional degree of 

freedom―that the application developer can change the hardware as well as the software―should lead to 

increased complexity everywhere in the application development workflow.

And indeed, this has been the case. Until recently, most developers of FPGA applications relied on tools and 

methods that have more in common with those used by hardware designers than by software programmers. 

The languages used have been hardware description languages (HDLs) such as Verilog* and VHDL*. These 

describe the nature of the logic rather than a flow of instructions. The compile times (called synthesis) have
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Advancing OpenCL™ for FPGAs
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18The Parallel Universe

been very long. And an uncomfortable amount of system knowledge has been required, especially for 

debug and test.

All of this is now changing. Intel has created Intel® FPGA SDK for OpenCL™ technology1, which 

provides an alternative to HDL programming. The technology and related tools belong to a class of 

techniques called high-level synthesis (HLS) that enable designs to be expressed with higher levels 

of abstraction. Intel FPGA SDK for OpenCL technology is now in widespread use. Amazingly for long-

time FPGA application developers, the performance achieved is often close to―or even better than―

HDL code. But it also seems apparent that achieving this performance is often limited to developers 

who already know how the C-to-hardware translation works, and who have an in-house toolkit of 

optimization methods.

At Boston University, we’ve worked on enumerating, characterizing, and systematizing one such 

optimization toolkit. There are already a number of best practices for FPGA OpenCL documents. This 

work augments them, largely by applying additional methods well known to the high-performance 

computing (HPC) community2. In this methodology, we believe we’re on the right track. It’s taken 

decades for HPC performance programming to reach its current level of sophistication. We shouldn’t 

be surprised that users of Intel FPGA SDK for OpenCL technology need to follow a similar path and 

learning curve. 

Please note that you can see more details on the work described here in references 3 and 4 at the 

end of the article. The first uses the FFT as a detailed case study. The second describes the empirically 

guided optimization framework. Also of potential interest, in related work, references 5 and 6 show 

how we augmented the toolflow, which can be used to test/verify design functionality and performance 

without generating hardware for the entire system. As a result, we can identify design bottlenecks and 

the impact of optimizations with greater accuracy, and thus achieve rapid turnaround. Figure 1 shows 

how these pieces fit together with the existing toolflow.

Empirically Guided Code Optimizations
We’ve proposed a series of systematic and empirically guided code optimizations for OpenCL that 

augment current best practices and substantially improve performance. Our work characterizes and 

measures the impact of all these optimizations. This not only enables programmers to follow a script 

when optimizing their own kernels, but also opens the way for the development of autotuners to 

perform optimizations automatically. 

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html


Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

19The Parallel Universe

1 The standard Intel® FPGA SDK for OpenCL™ technology toolflow is shown in light blue. Our 
augmentations to the standard toolflow are shown in yellow, green, and purple. This article 
describes the systematic optimizations.

We broadly categorize code optimizations in this domain into three sets:

1.	Intel’s best practices (IBPs)

2.	Universal code optimizations (UCOs)

3.	FPGA-specific optimizations (FSOs)

IBPs are design strategies given in the Intel Best Practices Guide7, which show how to express hardware 

using OpenCL semantics. We separate these from UCOs and FSOs because IBPs are well-known to the 

FPGA OpenCL community and there have been several studies characterizing their behavior.

UCOs consist of general approaches to optimizing programs that, to a large degree, are independent of 

the compute platform, e.g.: 
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•• Use 1D arrays

•• Records of arrays

•• Predication

•• Loop merging

•• Scalar replacement

•• Precomputing constants 

Though described (for example, in reference 2), they are largely missing from IBP documentation.

FSOs consist of a number of FPGA-specific optimizations that typically augment IBPs. They’re based on:

•• Obtaining a particular FPGA-specific mapping not found as an IBP

•• Facts stated in IBPs, but which we have leveraged and converted into optimizations

•• Typically used practices which (we have found) should actually be avoided

There are seven code versions, discussed in detail in references 4 and 6, which are incrementally 

developed. Each version contains one or more applied optimizations. Table 1 summarizes the 

optimizations and their type (IBP, FSO, and/or UCO).

Version Optimizations Type
0 (GPU code for porting to FPGA OpenCL) ―
1 Single thread code with cache optimization IBP, FSO

2

Implement task parallel computations in separate kernels 
and connect them using channels IBP

Fully unroll all loops with #pragma unroll IBP, UCO

Minimize variable declaration outside compute loops (use 
temps where possible) IBP, UCO

Use constants for problem sizes and data values (instead of 
relying on off-chip memory access) IBP, FSO, UCO

Coalesce memory operations IBP, UCO

3 Implement the entire computation within a single kernel 
and avoid using channels FSO

4 Reduce array sizes to infer pipeline registers as registers 
instead of BRAMs FSO

5 Perform computations in detail, using temporary variables 
to store intermediate results FSO, UCO

6 Use predication instead of conditional branch statements 
when defining forks in the data path FSO, UCO

Table 1. Summary of code versions and optimizations
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Version 0: Sub-Optimal Baseline Code
A popular starting point (for example, in reference 8) is kernels based on multiple work items (MWI) 

such as is appropriate for GPUs. Advantages of starting here include ease of exploiting data parallelism 

through SIMD, and compute unit replication (CUR), which is exclusive to MWI structures.

Algorithm 1 shows a V0-type kernel (based on reference 9). The core operation is to populate a matrix 

using known values of the first row and the first column. Each unknown entry is computed based on 

the values of its left, up, and up-left locations. This is achieved using loops which iterate in order over 

all matrix entries. The max function is implemented using “if-else” statements. In Algorithm 1, SIZE 

represents the dimension of blocks of matrix entries being processed.

Algorithm 1. Needleman Wunsch-V0

Version 1: Preferred Baseline Code (Used for Reference)
A less intuitive, but preferred, alternative is to use (as a baseline) single-threaded CPU code. In particular, 

initial designs should be implemented as single work item (SWI) kernels as recommended by IBPs. SWI 

kernels can infer and exploit all forms of parallelism effectively, and do so in a more efficient way than 

MWI kernels. The CPU-like baseline code should also be optimized for cache performance. This:

•• Helps the compiler infer connectivity between parallel pipelines (i.e., whether data can potentially be 
directly transferred between pipelines instead of being stored in memory)

•• Improves bandwidth for on-chip data access

•• Efficiently uses the internal cache of load store units which are responsible for off-chip memory 
transactions 
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Algorithm 2 shows the preferred baseline kernel. The first row and column of the matrix are Vector A 

and Vector B, respectively.

 

Algorithm 2. Needleman Wunsch-V1

Version 2: IBPs
Given the preferred baseline code, we then apply the following commonly used IBPs:

•• Multiple task parallel kernels

•• Fully unroll all loops

•• Minimizing state register usage

•• Constant arrays

•• Coalescing

Algorithm 3 shows the Needleman Wunsch kernel structure after we apply IBPs. Parallelism is exploited 

using a systolic array, with each processing element (PE) implemented in a separate kernel. Channels 

are used to connect PEs in a specified sequence. For each inner loop iteration, PEs compute consecutive 

columns within the same row. This ensures spatial locality for memory transactions. The drawback 

is data dependencies between kernels, which can’t be reliably broken down by the compiler since it 

optimizes each kernel as an individual entity. Thus, the overhead of synchronizing data paths can result 

in performance degradation.

Algorithm 3. Needleman Wunsch-V2
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Version 3: Single-Kernel Design
In Version 3, we merge the IBP-optimized task parallel kernels and declare all compute loops within 

the same kernel. This is because the compiler is still able to automatically infer task parallel pipelines. 

Having a single kernel carries a number of advantages over the multi-kernel approach, e.g.: 

•• Inherent global synchronization

•• Reduced resource usage and delays through pipeline merging/reordering

•• Simplified control logic

Algorithm 4 shows the kernel structure for implementing the systolic array as a single kernel. The 

compiler can now optimize the entire computation, as opposed to individual PEs. Synchronization 

overhead is also reduced, since almost all computation is tied to a single loop variable (j ). Nested loops 

are used because, in this particular case, the cost of initiation intervals is outweighed by the reduction in 

resource usage. This is because the compiler was unable to infer data access patterns when loops were 

coalesced.

Algorithm 4. Needleman Wunsch-V3
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Version 4: Reduced Array Sizes
Having large variable arrays results in pipeline registers being inferred as BRAMs instead of registers, 

which can have significant drawbacks on the design. Since BRAMs can’t source and sink data with the 

same throughput as registers, barrel shifters and memory replication are required. This drastically 

increases resource usage. Moreover, the compiler is also unable to launch stall-free iterations of 

compute loops due to memory dependencies. The solution is to break large arrays corresponding to 

intermediate variables into smaller ones.

Algorithm 5 shows the kernel structure for inferring pipeline registers as registers. All arrays are 

expressed as individual variables, generated using scripts, with the exception of local storage of Vector B 

in “left,” which has low throughput requirements.

 

Algorithm 5. Needleman Wunsch-V4

Intel® Math Kernel Library Free
DownloadFast Math Processing for Intel®-Based Systems
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Version 5: Detailed Computations
The OpenCL compiler doesn’t reliably break down large computations being assigned to a single 

variable into intermediate stages. This reduces the number of possible pipeline stages and can result in 

larger critical paths and data dependency stalls. Our solution is to do computations in as much detail 

as possible by using intermediate variables to help the compiler infer pipelines. If the logic is already 

optimal, these variables will be synthesized away and won’t waste resources.

Algorithm 6 shows the kernel structure after performing computations in detail with a number of 

intermediate variables added. The “max” function is also explicitly implemented.

 

Algorithm 6. Needleman Wunsch-V5

Version 6: Predication
We optimize conditional operations by explicitly specifying architecture states which ensure the validity 

of the computation. Since hardware is persistent and will always exist once synthesized, we avoid using 

conditional branch statements. Instead, variable values are conditionally assigned such that the output 

of invalid operations is not committed and hence does not impact the overall result. Algorithm 7 shows 

the “if-else” operations replaced with conditional assignments.
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Algorithm 7. Needleman Wunsch-V6

Hardware Specifications
The designs are implemented using an Intel® Arria® 10AX115H3F34I2SG FPGA and Intel® FPGA 
SDK for OpenCL™ technology 16.0. This FPGA has 427,200 ALMs, 1,506K logic elements, 1,518 DSP 

blocks, and 53 MB of on-chip storage. For GPU implementations, we use the NVIDIA Tesla* P100 PCIe 

12GB GPU with CUDA* 8.0. It has 3,584 CUDA cores and peak bandwidth of 549 GB/s. CPU codes are 

implemented on a 14-core, 2.4 GHz Intel® Xeon® E5-2680v4 processor with Intel® C++ Compiler 
v16.0.1.

Optimization Characterization
The optimizations are tested for the full OpenCL compilation flow using these benchmarks: 

•• Needleman Wunsch (NW)

•• Fast Fourier Transform (FFT)

•• Range Limited Molecular Dynamics (Range Limited)

•• Particle Mesh Ewald (PME)

•• Dense Matrix-Matrix Multiplication (MMM)

•• Sparse Matrix Dense Vector Multiplication (SpMV) and Cyclic Redundancy Check (CRC) 

Table 2 provides a summary of these benchmarks, their associated dwarfs8, tested problem sizes, and 

applicable code versions that are developed.
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Benchmark Dwarf Problem 
Size

V1 V2 V3 V4 V5 V6

NW Dynamic 
Programming

16K x 16K 
Integer 
Table

• • • • • •

FFT Spectral Methods

64 point 
Radix-2 1D 
FFT, 8,192

Vectors
• • • • • •

Range Limited N-Body

180 
Particles per 

Cell, 15% 
Pass
Rate

• • • • • •

PME Structured Grids

1,000,000 
Particles, 

323 Grid, 3D
Tri-Cubic 

• • • •

MMM Dense Linear 
Algebra

1K x 1K 
Matrix, 
Single 

Precision
• • • •

SpMV Sparse Linear 
Algebra

1K x 1K 
Matrix, 
Single 

Precision,
5%-Sparsity, 
NZ=51,122

• • • • •

CRC Combinational 
Logic

100 MB 
CRC32 • • • • •

Table 2. Benchmark summary

Figure 2 shows the results of individual optimizations. In almost all cases, we can see the same trend 

where traditional optimizations (V2) only result in a fraction of the speedup possible. By applying the 

additional optimizations on top of V2, performance is improved by orders of magnitude. 
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2 Impact of systematic application of the proposed optimizations to a cache-optimized
CPU baseline code. In almost all cases, every subsequent code version shows increasing
performance, with up to orders of magnitude better performance possible for fully-
optimized

The average impact of individual optimizations is shown in Figure 3. Generally, each successive set 

of optimizations applied results in increasing performance. The exception is V5. This is due to higher 

execution times of V5 for NW and SpMV. In both cases, performing computations in as much detail as 

possible results in the use of conditional statements that outweigh the benefits of the optimization. 

Once these statements are removed in V6, the speedup increases.

3 Performance for different code versions, obtained by averaging the speedup of all
applicable benchmarks.
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To demonstrate the overall effectiveness of the approach, we compare the performance of the 

optimized kernels against existing CPU, GPU, Verilog, and FPGA-OpenCL implementations. Table 3 
lists the references for these designs. They’re either obtained from the literature or implemented using 

available source code/libraries (denoted by an asterisk). Verilog FFT measurement from reference 3 has 

been extended to include off-chip access overhead.

Table 3. References for existing implementations

Benchmark CPU GPU Verilog* OpenCL™
NW Rodinia*9 Rodinia*9 Benkrid*10 Zohouri*11

FFT MKL*12 cuFFT**13 Sanaullah*3 Intel14

Range Limited ― ― Yang*15 Yang15

PME Ferit16 Ferit*16 Sanaullah17 ―
MMM MKL*12 cuBLAS*18 Shen*19 Spector*20

SpMV MKL*12 cuSPARSE*18 Zhou*22 OpenDwarfs*8

CRC Brumme*23 ― Anand*24 OpenDwarfs8

Figure 4 shows the average speedup achieved over the CPU code, while Figure 5 shows the normalized 

execution times for all implementations. From the results, we observe that our work outperforms 

multicore CPU implementations by approximately 1.2x due to the performance of codes written using 

Intel® Math Kernel Library (Intel® MKL). We’ve also achieved an average of approximately 5x lower 

execution time than existing FPGA OpenCL work. The GPU speedup of 2.4x relative to our work is due 

to the use of a high-end GPU (Tesla* P100) compared to a midrange FPGA (Intel® Arria® 10 FPGAs). We 

therefore also provide an estimate of high-end FPGA performance (Stratix R 10*) using a conservative 

factor of 4x to account for an increase in resource only. Results show that the optimized kernels on 

Stratix 10 are expected to outperform GPU designs by 65%, on average.

Conclusions
Comparison with existing Verilog* implementations show that the OpenCL kernels are, on average, 

within 12% of hand-tuned HDL. This demonstrates that the optimizations are able to bridge the 

performance-programmability gap for FPGAs and deliver HDL-like performance using OpenCL.
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4 Average speedup with respect to CPU across all applicable benchmarks

5 Performance of our work compared to existing CPU, GPU, Verilog*, and FPGA OpenCL 
implementations. Our work outperforms CPU and OpenCL for most of the benchmarks. 
Moreover, we also achieve speedups over GPU (SpMV, PME) and Verilog (SpMV, Range 
Limited).
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David Liu, Software Technical Consulting Engineer, and Anton Malakhov, Software Development 
Engineer, Intel Corporation

Python* as a programming language has enjoyed nearly a decade of usage in both industry and academia. This 

high-productivity language has been one of the most popular abstractions to scientific computing and machine 

learning, yet the base Python language remains single-threaded. Just how is productivity in these fields being 

maintained with a single-threaded language?

The Python language’s design, by Guido van Rossum, was meant to trade off type flexibility and predictable, 

thread-safe behavior against the complexity of having to manage static types and threading primitives. This, 

in turn, meant having to enforce a global interpreter lock (GIL) to limit execution to a single thread at a time to 

preserve this design mentality. Over the last decade, many concurrency implementations have been made for 

Python―but few in the region of parallelism. Does this mean the language isn’t performant? Let’s explore further.

Dispelling the Myths with Tools to Achieve Parallelism

Parallelism in Python*
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The base language’s fundamental constructs for loops and other asynchronous or concurrent calls all 

abide by the single-threaded GIL, so even list comprehensions such as [x*x for x in range(0,10)] 

will always be single-threaded. The threading library’s existence in the base language is also a bit 

misleading, since it provides the behavior of a threading implementation but still operates under the GIL. 

Many of the features of Python’s concurrent futures to almost-parallel tasks also operate under the GIL. 

Why does such an expressive productivity language restrict the language to these rules?

The reason is the level of abstraction the language design adopted. It ships with many tools to wrap 

C code, from ctypes to cffi. It prefers multiprocessing over multithreading in the base language, as 

evidenced by the multiprocessing package in the native Python library. These two design ideas are 

evident in some of the popular packages, like NumPy* and SciPy*, which use C code under the Python 

API to dispatch to a mathematical runtime library such as Intel® Math Kernel Library (Intel® MKL) or 

OpenBLAS*. The community has adopted the paradigm to dispatch to higher-speed C-based libraries, 

and has become the preferred method to implement parallelism in Python.

In the combination of these accepted methods and language limitations are options to escape them 

and apply parallelism in Python through unique parallelism frameworks: 

•• Numba* allows for JIT-based compilation of Python code which can also run LLVM*-based Python-
compatible code. 

•• Cython* gives Python-like syntax with compiled modules that can target hardware vectorization as it 
compiles to a C module. 

•• numexpr* allows for symbolic evaluation to utilize compilers and advanced vectorization. 

These methods escape Python’s GIL in different ways while preserving the original intent of the 

language, and all three implement different models of parallelism. 

Let’s take the general example of one of the most common language constructs on which we’d want 

to apply parallelism—the for loop. Looking at the loop below, we can see that it provides a basic 

service, returning all the numbers less than 50 in a list:
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Running this code gives the following result:

Python handles the list of items in a single-threaded way under the GIL, since it’s written in pure Python. 

Thus, it handles everything sequentially and doesn’t apply any parallelism to the code. Because of the way 

this code is written, it’s a good candidate for the Numba framework. Numba uses a decorator (with the @ 

symbol) to flag functions for just-in-time (JIT) compilation, which we’ll try to apply on this function:

Running this code now gives the following result:

Including this simple decorator nearly doubled performance. This works because the original Python 

code is written in primitives and datatypes that can be easily compiled and vectorized to a CPU. Python 

lists are the first place to look. Normally, this data structure is quite heavy with its loose typing and built-in 

allocator. However, if we look at the datatypes that random_list contains, they’re all integers. Because 

of this consistency, the JIT compiler of Numba can vectorize the loop.
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If the list contains mixed items (e.g., a list of chars and ints), the compiled code will throw a TypeError 

because it can’t handle the heterogeneous list. Also, if the function contains mixed datatype operations, 

Numba will fail to produce a high-performance JIT-compiled code and will fall back to Python object code. 

The lesson here is that achieving parallelism in Python depends on how the original code is written. 

Cleanliness of datatypes and the use of vectorizable data structures allow Numba to parallelize code with 

the insertion of a simple decorator. Being careful about the use of Python dictionaries pays dividends, 

because historically they don’t vectorize well. Generators and comprehensions suffer from the same 

problem. Refactoring such code to lists, sets, or arrays can facilitate vectorization.

	

Parallelism is much easier to achieve in numerical and symbolic mathematics. NumPy and SciPy do a great 

job dispatching the computation outside of Python’s GIL to lower-level C code and the Intel MKL runtime. 

Take, for example, the simple NumPy symbolic expression, ((2*a + 3*b)/b), expressed below:

This expression makes multiple trips through the single-threaded Python interpreter because of the 

structure and design of NumPy. Each return from NumPy is dispatched to C and returned back to the 

Python level. Then, the Python object is sent to each subsequent call to be dispatched to C again. This 

back-and-forth jumping becomes a bottleneck in the computation, so when you need to compute custom 

kernels that can’t be described in NumPy or SciPy, numexpr is a better option:
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How does numexpr achieve nearly a 4x speedup? The previous code takes the symbolic representation 

of the computation into numexpr’s engine to generate code that works with the vectorization 

commands from the vector math library in Intel MKL. Thus, the entire computation stays in low-level 

code before completing and returning the result back to the Python layer. This method also avoids 

multiple trips through the Python interpreter, cutting down on single-threaded sections while also 

providing a concise syntax.

By looking at the Python ecosystem and evaluating the different parallelism frameworks, it’s evident that 

there are good options. To master Python parallelism, it’s important to understand the tools and their 

limitations. Python chose the GIL as a design consideration to simplify framework development and give 

predictable language behavior. But, at the end of the day, the GIL and its single-threaded restrictions are 

easy to sidestep with the right tools.

Learn More
•• Intel® Distribution for Python
•• Intel® Math Kernel Library

Blog Highlights
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10 Huge Benefits of Edge AI & the Software Tools to Deliver Them
CHARLOTTE DRYDEN, INTEL CORPORATION

Artificial Intelligence (AI) continues to show up in our everyday lives, but its presence is gentle and 
welcome, largely due to the advancements in Edge AI. Many AI use cases are best suited for the 
edge where processing happens at or close to the data source, lowering costs, reducing application 
or service latency, improving reliability and increasing data privacy.

Whether we realize it or not, Edge AI technologies—seen and unseen—provide huge benefits 
in a world that’s digitally connected, 24x7. This rapid advancement of Edge AI is not because of 
one or two “killer apps”—new solutions and usages continue to emerge all the time.
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Kevin O’Leary and Alex Shinsel, Technical Consulting Engineers, Intel Corporation

How your application accesses memory dramatically impacts performance. It’s not enough to parallelize your 

application by adding threads and vectorization. Effective use of memory bandwidth is just as important. But 

often, software developers just don’t understand it. Tools that help minimize memory latency and increase 

bandwidth can help pinpoint performance bottlenecks and diagnose their causes. One such tool is Intel® 
Advisor, which has features to help optimize memory access and eliminate memory bottlenecks:

•• Roofline analysis with the new Integrated Roofline feature

•• Memory Access Pattern Analysis (MAP)
•• Memory Footprint analysis

Understanding How Your Program is Accessing Memory 
Helps You Get More from Your Hardware 

Remove Memory Bottlenecks Using Intel® Advisor
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Getting Great Performance
To get top performance out of your application, you need to know how well you’re using all system 

resources. You can see some useful metrics on your overall program in the Intel Advisor Summary 

view (Figure 1), which gives you an indication of how well the application is vectorized.

1 Intel® Advisor Summary view

You’ll also need to systematically investigate the loops in your program that are taking the most time. 

A key metric for this is Vectorization Efficiency (Figure 2). In this example, Intel Advisor is showing a 

vectorization gain of 2.19x. But this only gives us a vectorization efficiency score of 55%. Where did 

we lose 45% of our efficiency? There are many factors that can cause inefficient vectorization.

2 Intel Advisor Vectorization Efficiency view
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Performance Problems

Bad Access Pattern
Indirect memory access is a common cause of slowdowns. Notice in the following code snippet that we 

can’t decode A without first decoding B[i]:

This gives us an irregular access pattern. The compiler can often vectorize this by using a technique 

called gather/scatter―which is great because it allows that loop to vectorize, but bad because these 

gather/scatter instructions aren’t as fast as sequential access. For fast code, it’s important to try to have 

your data structures arranged so that data is accessed in unit stride. (You’ll see how Intel Advisor can 

show you this information later.)

Memory Subsystem Latency/Throughput
Getting your code to fit into the various memory caches, and making optimal use of data reuse, are 

crucial to getting the best performance out of your system. In the following example we’re indexing by i 

over a very large piece of data. This data is too big to fit in cache, which is bad―and made doubly so by 

A being a multidimensional array:

References to A[i][j] and A[i+1][j] are not located next to each other in memory. So, to get each new 

reference, we need to bring in a new cache line―and potentially evict a cache line. This “cache thrashing” will 

have a negative impact on performance. Techniques such as cache blocking, where we add a new inner loop that 

indexes over a much smaller range that is designed to fit in cache, can help optimize these types of applications. 

Branchy Code
Applications with a lot of branches (e.g., the for loop below with the if(cond(i)) can be vectorized 

using mask registers to block the SIMD lanes where the condition is not true. In these iterations, a SIMD 

lane does not do useful work. Intel Advisor uses the Mask utilization metric (Figure 3). Three elements 

are being suppressed, giving us a Mask utilization of 5/8 = 62.5%.
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3 Mask utilization metric

You could potentially access your data in a unit stride fashion and have excellent vector efficiency, but still not get 

the performance you need because of low mask utilization (Figure 4). Table 1 shows Memory access types.

4 Mask utilization versus efficiency
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Access Pattern Small Memory Footprint Large Memory Footprint

Unit Stride •• Effective SIMD
•• No latency or bandwidth 

bottlenecks

•• Effective SIMD
•• Bandwidth bottleneck

Constant Stride •• Medium SIMD

•• Latency bottlenecks possible

•• Medium SIMD

•• Latency and 
bottlenecks possible

Irregular Access,           
Gather/Scatter

•• Bad SIMD

•• Latency bottlenecks possible

•• Bad SIMD

•• Latency Bottlenecks

Table 1. Memory access types

Are You Bound by CPU/VPU or Memory?
If your application is memory bound, there are several features in Intel Advisor that can help you 

optimize. But first, you need to determine if you’re memory bound or CPU/VPU bound. A quick way to 

determine this is by looking at your instructions. The Intel Advisor Code Analytics windows (Figure 5) 

can give you a very basic way to see the mix of instructions that you’re code is executing.

5 Code Analytics windows
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A good rule of thumb is that applications that are executing a lot of memory instructions tend to be 

memory bound, whereas those that are executing a lot of compute instructions tend to be compute 

bound. Notice the breakdown in Figure 5. The ratio of scalar to vector instructions is particularly 

important. You should try to have as many vector instructions as possible. 

Another, slightly more complicated, technique is to use the Traits column in the Intel Advisor Survey 

view (Figure 6).

6 Traits column in the Intel Advisor Survey view

Think of Traits as what the compiler needed to do to vectorize your loop. In the latest vector instructions 

sets, such as Intel® AVX-512, there are many new instructions and idioms the compiler can use to 

vectorize your code. Techniques like register masking and compress instructions, shown in Figure 6, 

do allow applications to vectorize when this was not previously possible—but sometimes at a cost. 

Anything the compiler needed to do to get your data structures to fit in a vector (such as memory 

manipulation) will often appear in the Traits column. These Traits often indicate a problem that you can 

explore with Memory Access Pattern analysis.
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Helpful Optimization Features

Roofline Analysis
A Roofline chart is a visual representation of application performance in relation to hardware limitations, 

including memory bandwidth and computational peaks. It was first proposed by researchers at the 

University of California at Berkeley in the 2008 paper “Roofline: An Insightful Visual Performance 
Model for Multicore Architectures.” In 2014, this model was extended by researchers at the 

Technical University of Lisbon in a paper called “Cache-Aware Roofline Model: Upgrading the 
Loft.” Traditionally, Roofline charts have been calculated and plotted manually. But Intel Advisor now 

automatically builds Roofline plots. 

The Roofline provides insight into:

•• Where your performance bottlenecks are

•• How much performance is left on the table because of them

•• Which bottlenecks are possible to address, and which ones are worth addressing

•• Why these bottlenecks are most likely occurring

•• What your next steps should be

7 Roofline analysis

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-134.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-134.pdf
https://ieeexplore.ieee.org/document/6506838
https://ieeexplore.ieee.org/document/6506838


Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

46The Parallel Universe

The horizontal lines in Figure 7 represent the number of floating-point or integer computations of a 

given type your hardware can perform in a given span of time. The diagonal lines represent how many 

bytes of data a given memory subsystem can deliver per second. Each dot is a loop or function in 

your program, with its position indicating its performance, which is affected by its optimization and its 

arithmetic intensity (AI). 

Intel Advisor Integrated Roofline
The Integrated Roofline model offers a more detailed analysis, showing directly where the bottleneck 

comes from. Intel Advisor collects data for all memory types using cache simulation (Figure 8). 

8 Cache simulation in Intel Advisor

With this data, Intel Advisor counts the number of data transfers for a given cache level and computes 

the specific AI for each loop and each memory level. By observing the changes in this traffic from one 

level to another, and then comparing it to respective roofs representing the best possible bandwidths 

for these levels, it’s possible to pinpoint the memory hierarchy bottleneck for the kernel and determine 

optimization steps (Figure 9). 

Learn
MoreIntel® ADVISOR

Optimize Code for Modern Hardware
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9 Pinpointing the memory hierarchy bottleneck

Memory Access Pattern (MAP) Analysis
Intel Advisor MAP analysis gives you the deepest insight into how you’re accessing memory. Your 

memory access pattern affects both the efficiency of vectorization as well as how much memory 

bandwidth you can ultimately achieve. The MAP collection observes data accesses during execution and 

spots the instructions that contain the memory accesses. The data collected and analyzed appears in 

the Memory Access Patterns Report tab of the Refinement Reports window.

To run a MAP analysis from the GUI (Figure 10), you need to select loops using the checkboxes in the 

Survey report and run a MAP collection.
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10 Memory Access Patterns report

You can also run a MAP collection from the command-line. Use the -mark-up-list option to select 

loops to be analyzed.

The Memory Access Patterns report provides information about the types of strides observed in the 

memory access operations during loop execution. The tool reports both unit/uniform and constant 

strides (Figure 11).

Unit/Uniform Stride Types
•• Unit stride (stride 1) instruction accesses memory that consistently changes by one element from 

iteration to iteration.

•• Uniform stride 0 instruction accesses the same memory from iteration to iteration.

•• Constant stride (stride N) instruction accesses memory that consistently changes by N elements (N>1) 
from iteration to iteration.
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Variable Stride Types
•• Irregular stride instruction accesses memory addresses that change by an unpredictable number of 

elements from iteration to iteration.

•• Gather (irregular) stride is detected for v(p)gather* instructions on AVX2 Instruction Set 
Architecture.

11 Stride types

Double-click any line in the Memory Access Patterns report tab to see the selected operation's source 

code (Figure 12). 

The Source and Details views (Figure 13) both give you insights into another key Intel Advisor memory 

feature, Memory Footprint.

Memory Footprint Analysis
Memory Footprint is basically the range of memory a given loop accesses. This footprint can be a key 

indicator of your memory bandwidth. If the range is very large, then you might not be able to fit in 

cache. Optimization strategies such as cache blocking can make a big difference in these cases. Intel 

Advisor has three different memory footprint metrics (Figure 14).
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12 See the selected operation's source code

13 Details view
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14 Memory footprint metrics

Two basic footprint metrics represent just some aspects of your memory footprint. These metrics are 

collected by default in Memory Access Pattern (MAP) analysis:

•• Max Per-Instruction Address Range represents the maximum distance between minimum and 
maximum memory address values accessed by instructions in this loop. For each memory access 
instruction, the minimum and maximum address of its access is recorded and the maximum range 
of this address for all loop instructions is reported. It covers more than one loop instance, with some 
filtering, which is why sometimes Intel Advisor is less confident in this metric and reports it in gray.

•• First Instance Site Footprint is a more accurate memory footprint, since it’s aware of overlaps in 
address ranges in the loop iterations and gaps between address ranges accessed by the loop, but is 
calculated only for the first instance (call) of this loop. 

There’s a more advanced footprint calculated based on cache simulation, called the Simulated Memory 

Footprint. This metric shows the summarized and overlap-aware picture across all loop instances, 

but limited to one thread. It is calculated as the number of unique cache lines accessed during cache 

simulation multiplied by cache line size. To enable it in the GUI, select the Enable CPU cache simulation 

checkbox in the Memory Access Patterns tab of the Project Properties, and select Model Cache Misses 

and Loop Footprint Simulation Mode in the dropdown list (Figure 15). Then select the loops of interest 

with the checkboxes in the Survey view and run a MAP analysis.
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15 Simulated Memory Footprint

To enable in the command-line, you need to use the MAP command, as previously specified, with these 

options: -enable-cache-simulation and -cachesim-mode=footprint.
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You can see the results of the analysis in the Intel Advisor GUI Refinement Report view (Figure 16). The 

more detailed cache-related metrics―like the total number of memory loads, stores, cache misses, 

and cache-simulated memory footprint―allow a more detailed study of loop behavior with respect 

to memory. Table 2 shows Intel Advisor footprint metrics applicability, limitations, and relevance for 

analyzing different types of codes.

16 Intel Advisor GUI Refinement Report view

Max Per-
Instruction 

Address Range

First Instance Site 
Footprint

Simulated 
Memory 
Footprint

Threads analyzed for the loop/site 1 1 1

Loop instances analyzed
All instances, 

but with some 
shortcuts

1, only first 
instance

Depends on 
loop-call-count 

limit option
Aware of address range overlap? No Yes Yes
Suitable for codes with random 

memory access No No Yes

Table 2. Intel Advisor footprint metrics
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A Real-World Example
Some of the most common problems in computational science require matrix multiplication. The list of 

domains that use matrices is almost endless, but artificial intelligence, simulation, and modeling are just 

a few examples. The sample algorithm below is a triply nested loop where we do a multiply and an add 

for each iteration. Besides being very computationally intensive, it also accesses a lot of memory. Let’s 

use Intel Advisor to see how much.

Create a Baseline
The elapsed time was 53.94 seconds for our initial run. Figure 17 is a Cache-aware Roofline chart. The 

red dot is our main computational loop. It’s far below even DRAM bandwidth, and even farther below L1 

bandwidth, which is the maximum bandwidth we’re trying to achieve. You can see the precise bandwidth 

we’re achieving at each level of the memory hierarchy using the Code Analytics tab for the loop (Figure 18).

Why is our performance so poor? How can we do better? These are questions Intel Advisor was 

designed to answer. First, we need to examine the Survey view (Figure 19) to see what’s going on and 

whether Intel Advisor has any recommendations. Intel Advisor has noted that we have an Inefficient 

memory access pattern, and also that the loop has not been vectorized because of an assumed 

dependency. To examine the memory access pattern, we can run a Memory Access Pattern (MAP) 

analysis (Figure 20).
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17 Cache-aware Roofline chart

18 Data transfers and bandwidth

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en


Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

56The Parallel Universe

19 Survey view

20 Memory Access Pattern (MAP) analysis

Intel Advisor has detected a constant stride on our read access and a uniform stride of 0 for the write. 

The range of memory we’re accessing is 32MB, far bigger than any of our cache sizes (Figure 21). We 

can also see how well the caches are performing using the MAP report (Figure 22). We’re missing over 

2,300 cache lines, so it’s no wonder performance is bad. But there are several ways we can fix this.
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21 Strides distribution

22 MAP report

Step 1
Do a loop interchange so that we don’t need a constant stride and also don’t need to access memory 

over such a wide range. We can also vectorize the loop by including a pragma ivdep that informs the 

compiler that we don’t have a dependency that prevents vectorization.
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The elapsed time for our new run is 4.12 seconds, an improvement of more than12x. Why is our new 

performance so much better? First, let’s take a look at our Integrated Roofline chart (Figure 23). Each of 

the red circles represents the bandwidth of the corresponding memory hierarchy: L1, L2, L3, and DRAM. 

We can see that our computational loop’s L1 memory bandwidth, represented by the leftmost red circle, 

is now 95 GB/second. We can also use the Survey view (Figure 24) to see that we’re also now vectorized 

at 100% efficiency using AVX2 instructions.

23 Integrated Roofline chart

24 Survey view
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Our MAP report (Figure 25) informs us that all our accesses are now unit stride and the maximum address 

range is 16KB, well within the range of our cache size. Our cache is also performing much better (Figure 26). 

We’ve dropped to 512 cache misses, down from 2,302. So we’re getting better performance, but we’re still 

not near the peak. 

25 Map report

26 Cache performance

Step 2 
Implement cache-blocking so that our computations are over a smaller range of memory:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en


Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

60The Parallel Universe

In the above code, we’re adding three additional nested loops so that we do our computations in 

sections (or blocks). After we’re done with one block, we move to the next. The elapsed time of our 

cache-blocked case is 2.60 seconds, a 1.58x improvement from the previous run (Figure 27). Our 

loop’s L1 memory bandwidth is now 182 GB/second, much closer to the L1 roof. Our vectorization 

and striding have not changed, but we now have only 15 cache misses for our inner loop, and our 

address range has been reduced to 480 bytes (Table 3).

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en


Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

61The Parallel Universe

27 Performance improvements

Run Time 
Elapsed, 
Seconds

Total GFlops Memory 
Address 
Range

Cache 
Misses

Improvement 
(Time)

Baseline 53.94 0.32 32 MB 2,302 N/A 
(baseline)

Loop 
Interchange 4.19 4.17 16 KB 511 12.87x

Blocked 2.6 6.61 480 B 15 20.74x

Table 3. Summary of results

Optimizing Memory Accesses
It’s crucial to optimize the memory accesses of your program. Understanding how your program is 

accessing memory, using a tool like Intel Advisor, can help you get the most out of your hardware. By 

using the Roofline and new Integrated Roofline features of Intel Advisor, you can visualize your memory 

bottlenecks. You can get even greater memory insight when you combine Roofline features with Memory 

Access Pattern analysis.

Related Resources
•• Intel Advisor Roofline
•• Intel Advisor Integer Roofline
•• Intel Advisor Integrated Roofline
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How’d They Do That?
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Nitya Hariharan, Amarpal Singh Kapoor, and Rama Kishan Malladi, Technical Marketing 
Engineers, Core and Visual Computing Group, Intel Corporation; Md Vasimuddin, Research 
Scientist, Parallel Computing Lab, Intel Labs

For an application to be truly scalable, every section must scale linearly―or at least tend toward linear 

scalability. Amdahl’s Law tells us that a small serial fraction, or a poorly scaling parallel code section, can 

have a significant impact on the overall scalability of the application. This article focuses on one such 

section of HPC applications that tends to be serial: file I/O. We demonstrate the use and performance 

benefits of non-blocking MPI* I/O calls in the context of some real-world HPC applications.

Speeding Up I/O for HPC Applications

MPI-3* Non-Blocking I/O Collectives 
in Intel® MPI Library
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MPI provides non-blocking calls to allow developers to benefit from overlapping communication and 

computation, communication with other communication, and to aid I/O-intensive codes. [In Issue 33 of 
The Parallel Universe1, the article “Hiding Communication Latency Using MPI-3 Non-Blocking Collectives” 

demonstrates the use and benefits of non-blocking collective (NBC) communication. This article focuses 

on non-blocking I/O (e.g., MPI_File_iwrite_at).]

NBC I/O
NBC I/O operations are attractive because they can take advantage of both non-blocking and collective 

operations2. Non-blocking calls have the potential of hiding I/O cost by allowing execution of other 

independent computations in parallel. Apart from maximizing the hardware utilization, the non-blocking 

nature of these I/O calls also helps hide the synchronization costs of delayed processes. Another 

motivation to consider optimizations of this nature is the lower I/O performance relative to computation.

We’ll look at two application codes, LAMMPS* and BWA-MEM*, to study the performance gains from using 

non-blocking I/O calls. LAMMPS is a molecular dynamics application with a focus on material modeling3. 

BWA-MEM* is one of the most popular tools for mapping short DNA fragments, also called reads, to 

reference sequences such as the human genome4. Both use MPI I/O, making them good candidates to test 

NBC I/O. 

Test Case 1: LAMMPS
LAMMPS executes using an input file with a command in each line. Each command causes LAMMPS to 

take an action (e.g., set an internal variable or run a simulation for a given number of time steps). The 

Dump command looks like this:

For our I/O testing, we used the 3D Lennard-Jones (LJ) workload and added a Dump command to 

the input file. The corresponding inputs provided for the test are:

(Details of each input to the Dump command are given in reference 4 at the end of this article.) 
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The code maintains a list of dumps that need to be done and checks the list to determine the dumps that 

need to be done at every N time step. The atom data to be written is copied out to a string buffer. And the 

offset into the output file is calculated by each MPI rank. Then, the collective, blocking MPI I/O call 

MPI_File_write_at_all is used to write the data to the file.

Here’s the baseline code using a blocking MPI_File_write_at_all:

Here’s the optimized code using a non-blocking MPI_File_iwrite_at:

Given that the data being written in each iteration is independent, we can make use of an NBC I/O call 

here to overlap computation and file I/O. Since the offset into the file is already being calculated for 

each rank to prepare for MPI I/O, we only need to change the code to use the NBC I/O call and add the 

corresponding wait.

Also, each MPI rank writes independently to the file, so we use the non-blocking MPI_File_iwrite_at 

call instead of the collective, non-blocking MPI_File_iwrite_at_all call. To ensure good overlap of 

computation and I/O, we use a “prologue” and “epilogue” phase (i.e., a double-buffering algorithm), which 

uses different buffers to issue the asynchronous write for different iterations. We keep track of the number 

of writes being issued to decide which buffer to use and issue the MPI_Wait call for the previous iteration 

in the current iteration. This ensures correct buffer reuse.
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Figure 1 shows the speedup for MPI I/O and the total runtime for the LJ workload (10,000 time steps with 

a data dump every 20 time steps) at increasing node counts (two MPI processes per node and 20 OpenMP 

threads per MPI rank). The runs were done on an Intel® Xeon® Gold 6148 processor-based cluster with 

two sockets per node connected by Intel® Omni-Path Architecture. The I/O and total runtime were 

measured using the default timers in LAMMPS. Note that the speedup in I/O time doesn’t translate into a 

corresponding speedup in the total runtime. However, the parallel, non-blocking I/O does improve overall 

performance, even doubling the application performance at eight nodes.

1 Speedup from MPI I/O time and total run time for LAMMPS

Test Case 2: BWA-MEM

In next-generation sequencing (NGS) applications, sequence mapping is compute-intensive. As a primary 

step in the GATK (Genome Analysis ToolKit) workflow5―a popular workflow for genome assembly and 

finding genetic variants―sequence mapping accounts for 30% of the overall runtime. BWA-MEM6 is one 

of the most popular tools for mapping short DNA reads to reference genome sequences. Given a set of 

input sequences, BWA-MEM tries to find their most probable positions in the reference sequence.

BWA-MEM supports and scales well on a distributed-memory system and makes use of MPI I/O for 

writing its output. The code samples below show implementations using an MPI I/O blocking call and an 

optimization using non-blocking MPI I/O. Here’s the baseline code using a blocking MPI_File_write_at:
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Here’s the optimized code using a non-blocking MPI_File_iwrite_at:
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Figure 2 shows the BWA-MEM performance improvement using NBC MPI I/O (two MPI processes per 

node and 20 threads per MPI rank). The runs were done on an Intel Xeon Gold 6148 processor-based 

cluster with two sockets per node connected by Intel Omni-Path Architecture. Parallel, non-blocking I/O 

improves the performance of each test.

2 BWA-MEM performance improvement using NBC MPI I/O
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Speeding Up I/O for HPC Applications
Modern HPC applications are quite complex and often deal with iterative solution procedures. As a 

consequence, several solution steps need to be written to a file in addition to safe-keeping mechanisms 

like writing additional restart/temporary files, should the current run fail. Moving to MPI I/O is the first step 

for efficiently handling I/O in an HPC environment. This article demonstrated speedups with non-blocking 

MPI I/O calls for two real applications: LAMMPS and BWA-MEM. The code changes also highlight the ease 

of using NBC MPI I/O in these applications.
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