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Happy New Year...and Goodbye 2020

The oneAPI initiative continues to gain traction in industry and academia with the release 
of the v1.0 specification. It closed 2020 with strong showings at SC20 and the oneAPI 
Developer Summit (content is available online). The oneAPI Application Catalog went 
live with 240 applications developed by 200 companies. The catalog showcases oneAPI 
applications from multiple industries and application categories. The Intel® Academic 
Program for oneAPI also launched to help connect universities and students to the oneAPI 
initiative. Lastly, the new book, Data Parallel C++: Mastering DPC++ for Programming of 
Heterogeneous Systems Using C++ and SYCL, was published by Apress. It was coauthored 
by none other than James Reinders, founding editor of The Parallel Universe magazine. 
Speaking of James, I’m pleased to announce that he has rejoined Intel to help promote the 
oneAPI approach to heterogeneous parallel programming.

Given the increasing popularity of oneAPI, our feature article is a porting case study of a 
real scientific computing application: Solving a 2D Heat Equation Using Data Parallel 
C++. This is followed by tutorials on Migrating from CUDA* to DPC++ Using the Intel® 
DPC++ Compatibility Tool and Analyzing Memory and Threading Correctness for GPU-
Offloaded Code Using Intel® Inspector. These three articles will help you get started with 
DPC++ programming.

From there, we move to code modernization and high-performance computing with 
our continuing series on taking advantage of compiler optimization reports and tuning 
MPI applications with Uncovering More Tuning Opportunities with Intel Compiler 
Optimization Reports and Cluster-Wide MPI Tuning Using Intel MPI Library, respectively. 
These articles demonstrate simple ways to boost performance with little or no code 
modifications.

3The Parallel Universe

Letter from the Editor
Henry A. Gabb, Senior Principal Engineer at Intel Corporation, is a longtime high-performance and 
parallel computing practitioner who has published numerous articles on parallel programming. He 
was editor/coauthor of “Developing Multithreaded Applications: A Platform Consistent Approach” 
and program manager of the Intel/Microsoft Universal Parallel Computing Research Centers.

Welcome to the first issue of 2021. Here's hoping the new year is better.. 
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We close this issue with two articles on improving machine learning performance in data 
analytics applications. Accelerating Linear Models for Machine Learning and Improving 
the Performance of XGBoost and LightGBM Inference describe how to optimize model 
training and inference using the Intel® Distribution for Python. Both of these articles are 
republished from Medium – Intel Analytics Software, which focuses on Intel software for 
data science.

As always, don’t forget to check out Tech.Decoded for more information on Intel solutions 
for code modernization, visual computing, data center and cloud computing, data science, 
systems and IoT development, and heterogeneous parallel programming with oneAPI.

Henry A. Gabb

January 2021
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Graham McKenzie, Systems Field Application Engineer, Intel Corporation

The heat equation is a problem commonly used in parallel computing tutorials. In fact, we start from one 

such exercise published by the Partnership for Advanced Computing in Europe (PRACE). The original code1 

describes a C and MPI implementation of a 2D heat equation, discretized into a single point stencil (Figure 
1). The 2D plane is divided into cells, with each cell being updated every timestep based on the previous 

values of itself and its four neighbours. A more detailed explanation of the problem can be found on the 

PRACE repository2.

A Step-by-Step Case Study Porting a C and MPI Application to DPC++

Solving a 2D Heat Equation Using Data 
Parallel C++ (DPC++)
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1 The 2D heat equation and single point stencil

The default implementation starts with a 2000 x 2000 cell plane that evolves over 500 steps in time 

(Figure 2). The plane is initialized to a uniform temperature except for a disc in the center that has a 

different uniform temperature. External edges are fixed at four different temperatures.

2 Setting up the computation

https://software.seek.intel.com/parallel-universe-magazine
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7The Parallel Universe

In this article, readers will learn how we can take code written in standard C/C++, add some simple 

DPC++ constructs, and run on different parallel processing units. Familiarity with DPC++, SYCL, and 

oneAPI is assumed.

Initial Port to DPC++
The original PRACE code features MPI constructs to divide the problem into tiles that are processed 

across multiple processors and multiple nodes. These are initially removed from the code to focus on 

the core computation. They will be reintroduced later. Other features, such as regular writing of output 

images and restart checkpoints, are also removed to simplify the problem. The code associated with 

writing images depicting the initial and final planes were kept as a useful functional verification tool.

A further simplification made initially was to update the whole of the plane in a single kernel. The MPI-

based code separates the edges and interior so that the interior can be updated while the halo is being 

copied from other processes. The edge from one tile becomes the halo from a neighboring tile. Once 

the halo is updated, the edges can be computed, which are dependent upon both the halo and the 

interior (Figure 3). In this initial port, the edges and interior are treated as one.

3 Data layout and exchange

DPC++ Headers and Namespace
In order to use DPC++, two header files need to be included. The first provides support for the DCP++ 

language, is provided with the DPC++ compiler, and is referenced in main.c, core.c, and heat.h. 

The second header file is taken from the collection of DPC++ sample programs3 and is included for 

the exception handler; this header file is only referenced from main.c.  We also declare the sycl 

namespace to simplify SYCL constructs in the code body:

https://software.seek.intel.com/parallel-universe-magazine
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Other changes to main.c involve the main time iteration loop, which is wrapped top and tail with 

DPC++ code. The following five code segments represent contiguous code but are separated here to aid 

the description.

Device and Queue
A default selector is chosen, which means that the runtime will select the target device to run the kernel 

on. Usually this will result in a GPU being used, if present, or the host CPU otherwise. If we wanted to 

force a certain device, we could use cpu_selector or gpu_selector instead of default_selector.  

A queue is then defined based upon the selector and an exception handler which is wrapped in a try-catch 

block.

Buffers
Buffers provide containers for data that is present on the target device and are familiar to OpenCL 

programmers. We take the size of the problem from the data structure found in the original code, 

adding two to each dimension for the halo (one cell on each side) (Figure 3).  global_range is 

declared as a one-dimensional range based upon our problem size and dimensionality of the original 

host array. The buffers are then defined, referencing this range and pointers to the host data:

Queue Submission and Accessors
The time evolution for-loop is unmodified from the original code. For each iteration of the loop, we 

make a queue submission based upon the queue defined above. Accessors define how the buffers can 

be accessed on the device. In this case, we simply declare read_write access for both of our buffers. 

Although only one buffer is read from and one is written to during each loop iteration, we swap the 

buffers while they remain in context so we cannot declare them as read or write.

https://software.seek.intel.com/parallel-universe-magazine
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Kernel Execution
We use a parallel_for kernel, meaning that the body of this section will be submitted for every 

item in our problem (i.e., every cell in the plane, including the halo in this case). A one-dimensional id 

is defined that will be passed to the kernel identifying the cell being calculated. We could have used a 

two-dimensional ID, which would aid indexing within the kernel body, but opted for a one-dimensional 

ID to show a functional port with minimal code changes. The body of the kernel is contained within 

the function evolve in a separate file, core.c, which is described later. The original code has one call 

point to the equivalent evolve function and then swaps the pointers within the loop. Here we alternate 

pointers to our accessors on each loop iteration via separate parallel_for calls to make buffer 

management simpler:

https://software.seek.intel.com/parallel-universe-magazine
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Error Handling
Any errors that occur during kernel execution are passed to the host application scope and are handled 

there with conventional C++ exception handling techniques. Here, we simply rely upon the standard 

exception handler that is provided in the sample programs:

Kernel Code
The following code is the complete listing for core.c. It is vastly simplified from the original code since 

we are not worried about the inter-process communication or separating the interior from the edge 

calculation. In the original code, as with traditional CPU programming, the evolve function is called once 

for the entire plane and two nested for loops traverse the x and y dimensions, calculating the update for 

each cell. Due to the use of our parallel_for call above, the function below will be called for each 

individual cell. Therefore, there are no for-loops.

The global range used when calling parallel_for included the halo, which is not updated but is 

needed to calculate the new values for the edges. The if statement is used to omit the halo so that we 

do not attempt to read memory outside of the buffers, which would result in a segmentation fault. The 

actual calculation is confined to the last line of code and is very similar to the original code. Various 

intermediate variables are declared purely to aid readability.

There is a subtle change to the function parameters. The most obvious is the inclusion of the ID, which is 

needed to identify which cell is being calculated. We also pass in dx2 and dy2 to the kernel rather than 

dx and dy. dx2 and dy2 were originally calculated with the kernel, but their values remain constant 

across all cells. Since our new evolve function is called for every cell, calculating these values each 

time would be an unnecessary overhead. We also need to declare the function as SYCL_EXTERNAL 

to tell the compiler that this is kernel code, something that is not obvious from the body. The function 

prototype in the header file is also modified accordingly:

https://software.seek.intel.com/parallel-universe-magazine
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Compiling the Application and Kernel
The original code uses the mpicc compiler wrapper. To compile for DPC++, we use the dpcpp compiler 

and modify the Makefile accordingly. However, the files associated with writing out PNG files require 

a C compiler so we use GCC for this and wrap the function prototype with extern "C" {…}. These 

files reference libpng4, which can be installed with sudo apt-get install libpng-dev or 

downloaded and built from source.  

Targeting FPGA
The code and modified Makefile above are appropriate for targeting CPU and GPU. For FPGA we make 

a few minor changes in the source code and the Makefile.

main.c is modified to select the fpga_selector when FPGA is defined:

https://software.seek.intel.com/parallel-universe-magazine
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For the Makefile, there are just a few extra flags for the compiler and linker. We have also changed the 

executable name so that it remains separate from the CPU/GPU version.

Running the Application on the Intel® DevCloud
The Intel® DevCloud5 gives users the opportunity to try oneAPI and DPC++ for free with a preinstalled 

environment and access to multiple Intel CPU, GPU, and FPGA technologies. The following assumes that 

access to Intel DevCloud is already available and configured as per the Getting Started Guide6.

Before we can compile and run our code, we need to install libpng. As sudo access is not available on 

the Intel DevCloud, we do this by compiling from source. Download the source code from Reference 7 

and copy to the Intel DevCloud, then perform the following steps:

Then add the following to ~/.bashrc, or run these commands upon any new session. The 

environment variable LIBPNG_ROOT can then be used to reference the library in the Makefile:

To compile and run our heat equation, we can use interactive sessions on the relevant compute nodes 

for CPU and GPU using one of the following commands, respectively:

https://software.seek.intel.com/parallel-universe-magazine
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Then, we simply make and run the code before exiting the session:

Because FPGA can take a long time to compile, it's best to submit this as a batch job, targeting one of 

the FPGA compile nodes as follows:

It's also advisable to make clean between CPU/GPU compiles and FPGA or compile in a separate 

directory to avoid conflicts. The contents of compile_fpga.sh are as follows and the file must be 

executable:

Note that we have kept a separate Makefile for the FPGA compilation. The status of the job can be 

checked using the qstat command. Once completed and successful, the kernel can be run on the 

FPGA using an interactive session, which is launched as follows:

Functional Verification
At the end of execution, the host application prints out the final value of a specific cell to the terminal as 

well as outputting a PNG image of the final plane (Figure 4). The specific value provides a quick check 

against different code iterations and kernel targets. This value is the same across runs on CPU, GPU, and 

FPGA and matches the value of the original code. The PNG image can be compared using third-party 

applications and shows no differences across the three technologies or the original code.
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4 Single point verification

MPI Implementation
Before adding the MPI multi-process support back into the code, we need to think about how to divide the 

problem between host and device, as well as how to parallelize the operations. A reasonable starting point 

is to have the host deal with the edge calculations and transfer between processes and have the device 

calculate the interior. This also aligns with the approach in the original code. During the time iteration loop, 

the interior can be evolved independently of the edges with a synchronization point prior to the swapping 

of pointers at the end of each iteration (Figure 5). The two rows can operate in parallel.

5 Data exchange between host and device during each iteration

https://software.seek.intel.com/parallel-universe-magazine
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Another important consideration is how the problem is decomposed among MPI processes. The original 

code uses a two-dimensional decomposition, meaning that with four processes, the problem will be 

divided into four quadrants (2 x 2 tiles). The data transfers between host and device will be complex 

and comprise many individual PCIe transactions for the left and right edges, if we transfer only the 

data needed. It would be more efficient to transfer the whole data planes back and forth between each 

iteration of the interior evolution on the device. This is because one large transfer is faster than many 

small transfers. However, a better way would be to decompose the problem in one dimension only. This 

way, we can transfer only the data needed between host and device and those transfers will require 

just two lots of contiguous memory (top and bottom edges) (Figure 6). Figure 7 shows the relative 

execution time normalized to the time taken to transfer all data. Note that because the global edges 

of this problem are fixed, there is no need to transfer left and right edges for the one-dimensional 

implementation, so the amount of data transferred for 1D and 2D decompositions is the same.

6 1D versus 2D data decomposition

Data Parallel C++
A Standards-Based, Cross-Architecture Language

Get  
Started
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7 Relative execution time

We can force a one-dimensional decomposition by simply changing the dimensions passed to the MPI_Dims_

create function in setup.c. A zero passed to this function allows the runtime to define the range of 

each dimension. By using a one as the second value, we force a single column implementation:

The buffer implementation used in our previous implementation transfers data to the device implicitly prior 

to execution and then back again when the buffers go out of context. To be able to transfer data back and 

forth within the loop, we need finer control. The Unified Shared Memory (USM) model allows data to be 

allocated as device, host, or shared and enables familiar C++ constructs to interact with memory. We will use 

device allocated memory, which enables explicit control over data transfers between host and device.

Taking the original code as the starting point and keeping all the MPI code, the following changes are 

made. The header and namespace changes are omitted here, since they are the same as before. The 

following five sections represent contiguous code.

https://software.seek.intel.com/parallel-universe-magazine
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Device Memory Allocation
The device selector and queue are as per the first implementation. Instead of using buffers we use 

malloc_device to explicitly define memory on the device, which is then copied over with explicit 

memcpy functions. The queue needs to be referenced to provide the device context. The wait 

function waits for the previous memory operations to complete. This is necessary because host 

execution continues after submitting the requested action to allow parallel operation between host and 

accelerator. The wait function serves as a synchronization point to ensure that all actions in the queue, 

which may execute out of order, are complete before host execution continues. In the previous example, 

the SYCL runtime took care of scheduling operations using buffers.

Copy Edges to Device
At the beginning of each timestep, the top and bottom edges of each slice are copied from host to 

device using pointer math to identify the edges, which are one row below and above the top and 

bottom, respectively, due to the halo. Note that the copy operation is initiated, then the exchange 

function, and then the wait so that the copy and exchange can operate in parallel.

https://software.seek.intel.com/parallel-universe-magazine
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Kernel Execution
In this implementation, the device evolves the interior rather than the whole plane and so the function 

name for the compute is changed accordingly. The other subtle difference is that the device memory 

pointers are passed in instead of the pointers to buffer accessors. The exchange_finalize function 

is from the original code, which waits for the MPI-based data exchange to complete before evolving the 

edges. We then wait for the kernel to complete before copying the edge of the interior back to the host.

https://software.seek.intel.com/parallel-universe-magazine
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Pointer Swap
IThe final step for each time iteration is to swap the pointers. On the host this is handled by the swap_fields 

function from the original code. For the device, we perform a simple pointer swap.

Completion
To finalize the kernel operation, we copy both planes back to the host, free the previously allocated 

device memory and catch any exceptions that may have occurred.

Kernel Code
Kernel code looks very similar to the previous implementation. The only difference is in the if 

statement, which now excludes both the halo and edges from the top and bottom, but only the halo 

from the left and right edges.
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Additional Changes
Since the left and right edges are now evolved using the device kernel, we need to remove this 

operation from the host CPU in the evolve_edges function. This function comprises four for-loops, 

one for each edge. The left and right edges are the last two, which we simply comment out.

Compiling and Running with MPI
We use the Intel dpcpp compiler but add additional flags to include and link in the Intel MPI library:

To run the code, we use mpirun and pass in the number of processes and the executable:

Both the single-point value and PNG comparisons confirm that this implementation functionally 

matches the previous implementation and the original code. This remains true when run on a single 

node with multiple processes and across multiple nodes using multiple GPUs.
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Conclusions
With a few basic changes to the code, we have managed to take a standard problem and convert it to 

a DPC++ implementation using buffers and accessors. We can use the Intel DevCloud to compile code 

and run on multiple targets including CPU, GPU, and FPGA, with each of those targets producing the 

same functional results as the original implementation. Finally, we showed how to use USM to provide 

explicit control of memory transfers between the host and device, necessary to manage the data flow 

between multiple processes using MPI.
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Subarnarekha Ghosal, Compiler Technical Consulting Engineer, Intel Corporation

It's becoming apparent that future computing systems will be heterogeneous. The MAGMA project 

at the University of Tennessee is developing a dense linear algebra library similar to LAPACK but for 

heterogeneous architectures, like current CPU and GPU systems. I was looking for a sparse solver code 

sample that gives good performance across different architectures. MAGMA was an obvious candidate. This 

article describes my use of the Intel® DPC++ Compatibility Tool (DPCT) to migrate MAGMA CUDA code to 

Data Parallel C++ (DPC++).

It’s Easier than Ever to Move to a Non-Proprietary Programming Language

Migrating from CUDA to DPC++ Using 
the Intel® DPC++ Compatibility Tool
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  Migration Steps and Hacks Required
Migration can happen in two ways. The first method is file-to-file manual migration, which is a good choice 

if you're just migrating a few files. The second method is to create a .json file for projects that use make or 

cmake. MAGMA has a makefile, so let’s focus on the JSON approach.

The build options of input projects files (e.g., include path, macros definitions, etc.) are collected in a .json 

file. It is mainly generated using the intercept-build make command. (Be sure you’re using Make 

4.0 or later.) Next, we run the dpct command, which has a handful of flags to help with migration. The 

command-line for migrating MAGMA was:

Table 1.  Flags and functions
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(See the documentation for additional flags.)

The next step is to interpret the output after running dpct on the application. The dpct annotates places 

in the code where modifications may be necessary to make the code DPC++ compliant or syntactically 

correct, e.g:

For large projects, it's advisable to redirect the migration logs to a file. Learn how various error codes/

diagnostics are reported by the tool here.

Figures 1 and 2 show a successful migration of a kernel call from the MAGMA library. Since the 

migration is done with the --keep-original-code flag, the original code is also present in the 

migrated file (Figure 2).

1 Original CUDA code
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2 Migrated DPC++ code

Some manual effort is required to migrate functions that the tool can’t migrate, but annotations generated 

by the tool make this easier:

There are sometimes multiple annotations for a line of CUDA code:
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Some CUDA libraries have equivalent functions in oneAPI libraries (e.g., oneMKL, oneDNN, oneVPL, etc.). 

The Intel DPC++ Compatibility Tool can migrate many CUDA library functions to their oneAPI equivalents. 

The tools will call out those that can't be migrated directly. It's often possible to manually implement the 

same functionality. For example, the CUDA cusparseDcsrmv function can be manually migrated using a 

combination of oneMKL mkl::sparse::gemv and mkl::sparse::set_csr_data functions.

The Intel DPC++ Compatibility Tool is evolving every day with input from users. Some of the known issues 

with the tool are stated in the Known Issues and Limitations Section of the release notes.

The Intel DPC++ Compatibility Tool reduces the time and effort required to migrate CUDA applications to 

DPC++. It gives helpful annotations and warnings to minimize the manual effort required for sections of 

code that are not migrated by the tool. Migrating MAGMA from CUDA to DPC++ would have been a tedious 

job without this tool.

If you’re interested in migrating a CUDA application to DPC++, online training can help you get started. The 

Intel DPC++ Compatibility Tool is available in the Intel® oneAPI Base Toolkit

Lobachevsky State University of Nizhni Novgorod to Accelerate Studies of 
Quantum Processes Using oneAPI

Lobachesky State University of Nizhni Novgorod (UNN) announced a new oneAPI Center of 
Excellence (CoE) to facilitate studies in contemporary physics using the power of CPUs, GPUs, and 
other accelerators with oneAPI cross-architecture programming. This new center aims to address 
research challenges requiring high-performance computing (HPC) on heterogeneous architectures, 
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Kevin O’Leary, Lead Technical Consulting Engineer, and Michael Tutin, Software Architect, 
Intel Corporation

Modern workloads are diverse—and so are architectures. No single architecture is best for every workload. 

Maximizing performance takes a mix of scalar, vector, matrix, and spatial architectures deployed in CPU, 

GPU, FPGA, and other future accelerators. Heterogeneity adds complexity that can be difficult to debug. 

This article introduces the new features of Intel® Inspector that support the analysis of code that's 

offloaded to accelerators.

Intel® Inspector Makes It Easy to Debug Heterogeneous Parallel Code 

Analyzing Memory and Threading 
Correctness for GPU-Offloaded Code
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   Intel® Inspector Overview
Memory errors and nondeterministic threading errors are difficult to find without the right tool. Intel 

Inspector is designed to find these errors. It's a dynamic memory and threading error debugger for C, C++, 

DPC++, and Fortran applications that run on Windows or Linux operating systems.

1 Intel® Inspector in action

Figure 1 shows the types of problems that Intel Inspector finds:
 • Memory errors including leaks, invalid access, and more 

 • Persistent memory errors such as missing or redundant cache flushes

 • Threading errors such as data races and deadlocks

It's easy to use, reliable, and accurate. No special recompilation is required. You can use your normal 

debug or production build to catch and debug the errors. Intel Inspector can analyze dynamically 

generated or linked code and inspect third-party libraries, even when source code isn’t available. It 

breaks into the debugger just before the error occurs. Automated regression analysis is possible using 

the command-line option.
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  How to Analyze Your Offloaded Code Using Intel Inspector
Correctness analysis is more complicated when offloading code to an accelerator. Our experiences with 

DPC++ uncovered the need for a tool to assist in debugging offload issues. The current version of Intel 

Inspector introduces an important approach called “early interception.” It means that for offloaded code, it 

intercepts some problems in the early stage before kernel execution. Tables 1 and 2 list the offload issues 

that can be detected using Intel Inspector. Data races on shared data are reported, but there are limitations:
 • DPC++ barriers and OpenMP synchronizations are ignored. The tool will report false positives even if work-

items are synchronized.

 • Data races are not detected on variables defined in kernel local memory.

 • The instructions below set up your application to run on your CPU, but some GPU analysis is supported 
using early interception.

Step 1 is to configure your application to run on the host CPU:

Next, configure OpenMP applications to run kernels on the CPU device:

Verify that the application works correctly before running the analysis. Enable code analysis and tracing in the 

JIT compiler/runtimes:

Set up the Inspector environment

Step 2 is to run an analysis on a small workload using either the GUI (inspxe-gui) or command-line 

(inspxe-cl) clients. Perform analysis using the command-line client as follows:
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View the results as follows:

Alternatively, you can view the results in the GUI:

You can also launch an analysis and view the results in the GUI (Figures 2 and 3).

2 To launch an analysis in the GUI, select the desired analysis from the pulldown menu 
and click the Start button. In this screenshot, a “Memory Error Analysis” is selected.
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3 Viewing the results of a deadlock and data race analysis in the Intel Inspector GUI

  Usage Example: Using a Host Pointer on the Device
The following code contains a memory problem:
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Launch this code using the Intel Inspector command-line client and view the analysis results in the GUI 

(Figure 4):

4 Intel Inspector analysis showing the location of the memory error in the example 
code
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  Usage Example: Finding a Data Race
The following code contains a race condition: 

Launch this code using the Intel Inspector command-line client and view the analysis results in the GUI 

(Figure 5):
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5 Intel Inspector analysis results showing a write-write data race in the example code

University of Illinois to Bring oneAPI Cross-Architecture Programming   
Model to NAMD

The Beckman Institute for Advanced Science and Technology at University of Illinois announced 
a new oneAPI Center of Excellence (CoE) to bring the oneAPI programming model to the life 
sciences application NAMD to additional heterogeneous computing environments. NAMD, which 
simulates large biomolecular systems, is helping to tackle real-world challenges such as COVID-19.
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Table 1. Memory issues that Intel Inspector can detect

Table 2. Intel Inspector can detect data races.
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  Conclusions
oneAPI provides a standard, simplified programming model that can run seamlessly on the scalar, 

vector, matrix, and spatial architectures deployed in CPUs and accelerators. It gives users and domain 

experts the much-needed freedom to focus on the code itself and not the underlying mechanism that 

generates the best possible machine instructions. Correctness analysis tools like Intel Inspector provide 

much-needed assistance in debugging difficult-to-detect threading and memory issues.

  References
 • oneAPI

 • Intel oneAPI Toolkits 

 • Intel® Inspector
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Mayank Tiwari, Cloud Software Engineer, and Rama Malladi, Graphics Performance Engineer, 
Intel Corporation

The compiler reports generated by the Intel C, C++, and Fortran compilers provide useful information for 

optimizing code. Our previous articles in The Parallel Universe (see issues 41 and 42) discussed compiler 

reports for loop transformations and vectorization. In this article, we'll cover code generation optimizations, 

interprocedural optimization (IPO), inlining, data alignment, OpenMP and auto-parallelization, and floating-

point precision reports. These reports highlight the code generation done by the compiler and help us get 

better performance by doing “last mile” code changes and optimizations.

Code Generation, Interprocedural Optimization, Floating-Point Precision, 
and More

Uncovering More Tuning Opportunities 
with Intel® Compiler Optimization Reports
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  Generating Optimization Reports
For the Intel® C/C++ compiler on Linux and macOS, the -qopt-report[=n] option requests an 

optimization report. Use the /Qopt-report[:n] option on Windows.) The ‘n’ is optional and indicates 

the level of detail in the report: 0 (no report) through 5 (detailed report). In this article, we'll discuss reports 

generated using -qopt-report=5 (detailed report).

  Code Generation
The code generation optimizations section of the compiler report can help in determining the number 

of hardware registers available, used, and spills, fills. The simple C++ vector addition shown in Figure 1 

gives the compiler optimization report shown in Figure 2. It shows detailed register usage for the input 

arguments, global and local variables, register spills, and stack usage.

1 Simple vector addition in C++

Registers are the closest memory to the ALUs in a CPU, so reads and writes to registers are fast. For best 

performance, programmers should ensure that most of the variables in a routine can be accommodated in 

these registers. However, the number of registers is limited, so the compiler attempts to generate code for 

optimal allocation of these registers.

If a routine uses more variables than available registers, some variables may need to be stored and reloaded 

from the stack. This is known as register spilling. Sometimes it's unavoidable, but one can optimize register 

usage by applying loop optimizations like loop fission when possible. If the compiler optimization report 

indicates a significant number of spills, this is referred to as a high register pressure performance issue. 

Recommended optimizations for register pressure include avoiding loop unrolling, loop fission, and having 

the compiler generate scalar plus vector code.
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2 Intel® C++ compiler code-generation report showing register pressure and stack 
usage

  Interprocedural Optimization
Take a look at the pseudocode shown in Figure 3. It was adapted from a Lattice Boltzmann Method 

(LBM) application. The compiler optimization reports with and without IPO are shown in Figures 4 and 

5. The compilation units, lbm_file1.c and lbm_file2.c, contain functions func_grids and func2, 

respectively. func2 invokes func_grids in a time-step loop.

One of the most common optimizations for better compiler code generation and performance is function 

inlining, but it can be done only when the callee (function definition) and caller (invocation) are in a single 

compilation unit. This isn’t the case for the LBM example in Figure 3. However, the Intel compiler can do 

interprocedural optimization (the -ipo and /Qipo compiler options on Linux and Windows, respectively). 

As shown in Figure 4, the call to func_grids prevents vectorization of the loop in func2. Using IPO gives 

the compiler an opportunity to vectorize such loops/function calls by inline optimization (Figure 5).
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3 Example code showing the use of IPO compiler optimization

4 Compiler optimization reports for each file without IPO
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5 Compiler optimization report using IPO showing inlining, vectorization, and 
dead static function elimination. Note that only one report (ipo_out.optrpt) is 
generated.

  Function Inlining
One of the most common compiler optimizations is to inline a called function within the caller. The smaller a 

function’s size, the more likely it is to be inlined. The compiler generally tries to limit the “code bloat” caused 

by inlining, but users can override the compiler’s conservative tendencies by changing the options listed in 

Figure 6.

6 Compiler options and heuristics for inlining
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  Floating-Point Model and Precision
Scientific users usually want to maintain high precision in their computations. This is typically accomplished 

by using 64-bit instead of 32-bit floating-point datatypes. However, using lower precision datatypes 

when appropriate can improve performance. In addition, compiler optimizations that affect numerical 

reproducibility/consistency are sometimes prevented using the  -fp-model precise option 

(fp:precise on Windows).

The code in Figure 7 computes the square norm of a 2D array. If this code is compiled with the precise 

floating-point model, the compiler is unable to vectorize the inner loop (Figure 8). A more relaxed floating-

point model (the default) allows the compiler to do more aggressive optimization, as suggested in the 

report.

7 A simple two-level reduction loop

8 A precise floating-point model can limit optimization

  OpenMP and Auto-Parallelization
Another speedup opportunity on modern processors is parallelism. The Intel compilers support parallelism 

when the compiler can determine that it is safe (auto-parallelization) or when the parallelism is expressed 

using OpenMP (Figure 9). The compiler optimization reports which loops are parallelized when the 

OpenMP (-qopenmp and /Qopenmp on Linux and Windows, respectively) and auto-parallelization 

(-parallel and /Qpar on Linux and Windows, respectively) options are used (Figure 10).
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9 Code snippet with OpenMP parallel constructs and potential compiler auto-
parallelization

10 Compiler report showing OpenMP and auto-parallelization

  Closing Comments
The Intel compilers provide a rich set of features, performance optimizations, and support for the 

latest language standards. Users are encouraged to try the latest compiler and experience application 

performance improvements that are possible by changing a few compiler options. The compiler reports 

discussed in this and previous articles help to understand what the compiler is doing. The examples shown 

in these articles helps drive this point home.

Learn More
1. Intel® 64 and IA-32 Architectures Software Developer Manuals 
2. Intel® C++ Compiler Classic Developer Guide and Reference 
3. Consistency of Floating-Point Results using the Intel® Compiler
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Dr. Amarpal S Kapoor, Technical Consulting Engineer, and Marat Shamshetdinov, Software 
Development Engineer, Intel Corporation

This article continues our series on the tuning utilities in Intel® MPI Library. While the previous articles 

primarily focused on application-specific tuning tools and methodologies, this one focuses on cluster-

wide tuning using a utility called mpitune_fast. Ideally, mpitune_fast should be run by a cluster 

administrator to ensure that users get an optimally tuned configuration of Intel MPI Library. However, 

mpitune_fast can be run by unprivileged users at any time. This article introduces mpitune_fast 

and describes a tuning methodology and the resulting performance gains for the Intel® MPI Benchmarks. 

All experiments in this article use Intel MPI Library 2019 U9. Results are presented from two Intel® Xeon® 

processor-based clusters: Endeavor and the Intel® DevCloud.

Tune MPI Collective Communication with the mpitune_fast Utility 

Cluster-Wide MPI Tuning Using 
Intel® MPI Library
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The ease of use, low overhead, and potential performance gains of Autotuner inspired Intel MPI 

Library’s development team to extend its scope beyond application-specific tuning to cluster-wide 

tuning. IMB is used generate tuning data that is generalizable to most MPI applications. Combining 

Autotuner and IMB resulted in a cluster-wide tuning utility called mpitune_fast (Figure 1).

1 Components of mpitune_fast

mpitune_fast iteratively runs IMB with predefined settings to generate cluster-specific tuning 

parameters that are better than Intel MPI Library’s default settings. The resulting configuration is 

stored in a file that can be used by all MPI applications running on the cluster. Cluster administrators 

can set the I_MPI_TUNING_BIN environment variable to point to this file so that all MPI applications 

running on the cluster can benefit from the mpitune_fast analysis.

Key Features of mpitune_fast

Cluster-Wide Tuning
Cluster-wide tuning refers to two capabilities: 

1. Generation of tuning data that remains valid for any application running on the cluster 

2. Generation of tuning settings that combine multiple nodes (1 to Nmax ) and processes per node (1 to 
Cmax )

Consequently, mpitune_fast only needs to be run once as long as there are no changes to the cluster 

configuration.

Dynamic Tuning
mpitune_fast is based on Autotuner, so it inherits dynamic tuning capabilities, which greatly reduces the 

overall tuning overhead and simplifies user workflows.
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Parallel Tuning
mpitune_fast is a cluster-wide tuning tool, so it's important to tune for multiple MPI rank placement 

schemes and a variable number of nodes. This is achieved by tuning in parallel for multiple values of 

processes per node (-ppn) and total number of nodes (-n), whenever possible. When tuning for high 

values of -ppn (tending towards the number of physical cores per node) and -n (tending towards the total 

number of nodes in the hostfile), the tuning runs are inherently serial. However, for smaller -ppn and -n 

values, mpitune_fast automatically launches parallel tuning instances to better utilize the hardware 

and reduce the overall tuning overhead.

Ease of Use
A design goal of mpitune_fast is to maintain a simple user workflow and invocation scheme. Therefore, 

any complexity associated with running IMB and Autotuner is hidden from the users. mpitune_fast 

carefully configures underlying tools through runtime options and environment variables.

Methodology
Using mpitune_fast is very simple. The following command launches mpitune_fast on clusters 

running the LSF or Slurm job schedulers (automatic detection of hostfile is enabled):

For clusters running other job schedulers, additionally a file containing the list of nodes on which to run 

mpitune_fast must to be specified:

mpitune_fast only has a handful of arguments. They can be viewed using the following help option,

By default, mpitune_fast tunes for multiple processes per node (-ppn) and number of nodes (-n) (i.e., 

all powers of two up to the physical core count including the physical core count for  -ppn and all powers 

of two up to the host count). For example, for a cluster with 50 nodes and 24 physical cores per node, by 

default mpitune_fast would test  -n values of 1, 2, 4 , 8, 16, 32, and 50 and  -ppn values of 1, 2, 4, 8, 

16, and 24. If common usage patterns for  -n and  -ppn used by jobs on a cluster are known, one may 

optionally limit the  -ppn and  -n values to one or more values (in addition to specifying custom values) by a 

comma-separated list:
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Tuning overhead may be further reduced by restricting the scope of collectives to tune using the -c 

option (allreduce, reduce, bcast, and barrier are tuned by default):

Running these commands generates a tuning file that can be used as the default tuning file for all MPI 

applications running on the cluster in question. One must be careful when using the  -n option to 

mpitune_fast. Here, it represents the number of nodes. In the context of mpirun or mpiexec.hydra,  

-n represents the total number of ranks. mpitune_fast also accepts the  -d option to store the tuning 

results in a user-specified directory. 

To evaluate the performance benefits of mpitune_fast, we use IMB to measure the performance of 

common MPI collective communication functions: Allreduce, Bcast, Reduce, Scatter, and Gather. 

Our test script performed three main steps. 

First, IMB was run with Intel MPI Library’s default tuning configuration using the following command:

Table 1 shows the values of variables used for this command.

Table 1. Test configuration
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To have tighter control over the number of repetitions to run per message size in IMB, instead of running a 

single command to test performance over the entire 1 B to 4 MB message range, we chose to split it into 

three separate executions. The arguments to  -iter and  -msglog changed across the three executions 

as shown in Table 2.

Table 2.  Message size driven repetition selection logic

As shown in Table 2, we performed 1,000 repetitions for small messages of sizes 21 B to 216 B, 600 

repetitions for medium messages of sizes 217 B to 219 B, and 20 repetitions for large messages of sizes 220 

B to 222 B.

The performance data collected from this step served as baseline performance. We chose to track IMB’s 

t_max metric per message size, which is the worst observed performance across all ranks in a collective 

call, and therefore a safe performance measure.

We then ran mpitune_fast as an unprivileged user (to extend the scope of this article to all cluster 

users, not just cluster administrators):

We restricted tuning to a specified number of nodes, number of processes per node, and MPI functions of 

interest. This step generated a binary file with tuned settings.

Finally, the tuning file was used to assess the benefit of the mpitune_fast analysis. The following 

environment variable directs Intel MPI Library to use a specified tuning file:
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Results
This section presents the data we collected from running the steps described in the previous section 

on two Intel® Xeon® processor-based clusters: Endeavour and Intel DevCloud. On Endeavour, we used 

16 Intel Xeon Platinum 8268 processor dual-socket nodes connected through a Mellanox Quantum 

HDR interconnect. On Intel DevCloud, we used eight Intel Xeon Gold 6128 processor dual-socket nodes 

connected through an Ethernet interconnect.

2 Performance improvement for five common MPI collective communication functions 
on Endeavour
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Figure 2 shows the performance gains we observed on Endeavour. An average gain of 11.15% was 

observed for all functions over the entire range of message sizes. Out of the 111 data points shown in 
Figure 2, five data points show some performance degradation. mpitune_fast developers are working 

on refining the tuning methodologies to eliminate such behavior. Also, such minor degradations may be 

attributed to noise and network traffic coming from other applications running on nodes connected to the 

same switch.

3 Performance improvement for five common MPI collective communication functions 
on the Intel DevCloud
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Figure 3 shows the performance gains observed on Intel DevCloud. An average gain of 36.35% was 

observed for all functions over the entire range of message sizes. Unlike Endeavour, no performance 

degradations were observed.

Limitations
The 2019 U9 version of mpitune_fast has the following limitations:

1. Non-blocking collectives aren’t supported yet. 

2. By design, mpitune_fast currently only supports IMB to generate tuning data. Tuning based on 
user-specified benchmark applications is not supported.

3. Conditional tuning specific to user-defined message sizes is not currently available.

Summary
This article introduced mpitune_fast, one of Intel MPI Library’s tuning utilities, to conveniently 

generate cluster-wide tuning data. Both cluster administrators and unprivileged users can run this utility. 

Average gains of 11.15% and 36.35% were observed for five common MPI functions on Endeavour 

and Intel DevCloud, respectively. While the tuning data generated by mpitune_fast is applicable to 

any application, Autotuner can generate application-specific tuning data, thereby providing additional 

performance gains in user applications. The recommended workflow is for cluster administrators to first 

run mpitune_fast to generate optimal Intel MPI Library tuning settings for their clusters. Cluster users 

can then run Autotuner to generate even better settings for their applications.
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Victoriya Fedotova, Machine Learning Engineer, Intel Corporation

If you've ever used Python and scikit-learn to build machine learning (ML) models from large data sets, you 

may have also wished that you could make these computations go faster. What if I told you that altering a 

single line of code could accelerate your ML computations? What if I also told you that getting faster results 

doesn't require specialized hardware?

Linear Regression Has Never Been Faster

Accelerating Linear Models for 
Machine Learning
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In this article, I'll teach you how to train ridge regression models using a version of scikit-learn that's 
optimized for Intel CPUs, then compare the performance and accuracy of these models trained with the 

vanilla scikit-learn library. This article continues our series on accelerated ML algorithms.
 • Fast Gradient Boosting Tree Inference for Intel® Xeon® Processors
 • K-means Acceleration with 2nd Generation Intel® Xeon® Scalable Processors

  A Practical Example of Linear Regression
Linear regression, a special case of ridge regression, has a lot of real-world applications. For my 

comparisons, I’m going to use the well-known House Sales in King County, USA data set from Kaggle. 
This data set is used to predict house prices based on one year of King County sales data.

This data set has 21,613 rows and 21 columns. Each row represents a house that was sold in King County 

between May 2014 and May 2015. The first column contains a unique identifier for the sale, the second 

column contains the date the house was sold, and the third column contains the sale price, which is also the 

target variable. Columns 4 to 21 contain various numerical characteristics of the house, such as the number 

of bedrooms, square footage, the year when the house was built, zip code, etc. I am going to build a ridge 

regression model that predicts the price of the house based on the data in columns 4 to 21.

In theory, the coefficients of the linear regression model should have the lowest residual sum of squares 

(RSS). In practice, the model with the lowest RSS is not always the best. Linear regression can produce 

inaccurate models if input data suffers from multicollinearity. Ridge regression can give more reliable 

estimates in this case.

  Solving a Regression Problem with scikit-learn
Let’s see how to build a model with sklearn.linear_model.Ridge. The program below trains a ridge 

regression model on 80% of the rows from the House Sales dataset, then uses the other 20% to test the 

model’s accuracy.
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The resulting R2 equals 0.69, meaning that our model describes 69% of variance in the data. See the 

Appendix for details on the quality of the trained models.

  Intel-Optimized scikit-learn
Even though ridge regression is quite fast in terms of training and prediction time, you usually need to 

perform multiple training experiments to tune the hyperparameters. You might also want to experiment 

with feature selection (i.e., evaluate the model on various subsets of features) to get better prediction 

accuracy. Since one round of training can take several minutes on large data sets, which can quickly add up 

if your task requires multiple rounds of training, the performance of linear model training is critical.

Intel® Distribution for Python is a drop-in replacement for the native Python installation, but it's optimized 

for Intel® architectures. It works seamlessly with the packages available for installation through common 

channels such as conda and pip. The scikit-learn in Intel Distribution for Python has the same set of 

algorithms and the APIs as Continuum’s scikit-learn, so no code changes are required to get a performance 

boost for ML algorithms.

Also, with daal4py, a Python interface to the Intel® oneAPI Data Analytics Library, it's possible to improve 

the performance of scikit-learn even further. daal4py provides configurable ML kernels, some of which 

support streaming input data and can easily be scaled out to clusters of workstations.

  How to Configure scikit-learn with daal4py
There are several ways to install Intel® Distribution for Python. Follow these instructions to install it with 

conda.

Dynamic patching of scikit-learn is required to use daal4py as the underlying solver. You can enable 

patching without modifying your application. Just use the following command-line flag:

Patching also can be enabled within your application:
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To undo the patch, run:

Applying the patch impacts the following scikit-learn algorithms:

 • sklearn.linear_model.LinearRegression
 • sklearn.linear_model.Ridge (solver=’auto’)

 • sklearn.linear_model.LogisticRegression and sklearn.linear_model.LogisticRegressionCV (solver in 
[‘lbfgs’, ‘newton-cg’])

 • sklearn.decomposition.PCA (svd_solver=’full’ and introduces svd_solver=’daal’)

 • sklearn.cluster.KMeans (algo=’full’)

 • sklearn.metric.pairwise_distance with metric=’cosine’ or metric=’correlation’

 • sklearn.svm.SVC

This list will continue to grow in the next releases of Intel Distribution for Python.

Performance Comparison
To compare performance of the vanilla scikit-learn and Intel-optimized scikit-learn, we used the King 

County data set plus six artificially generated datasets with varying numbers of samples and features. The 

latter were generated using the scikit-learn make_regression function:

Figure 1 shows the wall-clock time spent on training a ridge regression model with two different 

configurations:

 • Scikit-learn version 0.22 installed from the default set of conda channels.

 • Scikit-learn version 0.21.3 from Intel Distribution for Python optimized with daal4py.

To enable oneDAL optimizations in scikit-learn, we used the -m daal4py command-line option. For 

performance measurements, we used the Amazon Web Services Elastic Compute Cloud (AWS EC2). We 

chose the instance that gives best performance:

 • CPU: c5.metal (2nd Generation Intel Xeon Scalable processors, two sockets, 24 cores per socket)

Amazon states that “C5 instances offer the lowest price per vCPU in the Amazon EC2 family and are ideal 

for running advanced compute-intensive workloads.” The c5.metal instance has the most CPU cores and 

the latest CPUs among all C5 instances.
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1 Ridge regression training time

See the Configuration section below for hardware details. See the Appendix for details on the quality of 

trained models.

Figure 1 shows that:

 • Ridge regression training is up to 5.49x faster with the Intel-optimized scikit-learn than with vanilla 
scikit-learn.

 • The performance improvement from the Intel-optimized scikit-learn increases with the size of the 
data set.

What Makes scikit-learn in Intel Distribution for Python Faster?
For big data sets, ridge regression spends most of its compute time on matrix multiplication. oneDAL’s 

implementation of ridge regression relies on the Intel® Math Kernel Library (Intel® MKL), which is highly 

optimized for Intel CPUs. Intel MKL uses Single Instruction Multiple Data (SIMD) vector instructions from 

the Intel® Advanced Vector Extensions 512 (Intel® AVX-512) available on 2nd Generation Intel Xeon 

Scalable processors. Compute-intensive kernels like matrix multiplication benefit significantly from the 

data parallelism that these instructions 
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provide. Another level of parallelism for matrix multiplication is achieved by splitting matrices into blocks 

and processing them in parallel using Threading Building Blocks (TBB).

The Intel-optimized version of scikit-learn gives significantly better performance for ridge regression with 

no loss of model accuracy and little to no code modification. The performance advantages are not limited 

to just this algorithm. As mentioned previously, the list of optimized ML algorithms continues to grow.

Configuration

Hardware
c5.metal AWS EC2 instance: Intel Xeon 8275CL processor, two sockets with 24 cores per socket, 192 GB 
RAM. OS: Ubuntu 18.04.3 LTS.

Software
Vanilla sklearn: Python 3.8.0, scikit-learn 0.22, pandas 0.25.3.

Intel Distribution for Python scikit-learn: conda installation from the Intel channel: Python 3.7.4, scikit-
learn 0.21.3 optimized with daal4py 2020.0 build py37ha68da19_8, pandas 0.25.1.

Python and accompanying libraries are the default versions installed by the conda package manager when 

configuring the respective environments.

Appendix
Table 1. Root mean squared deviation (RMSD) and the coefficient of determination (R2) for ridge 
regression models
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Igor Rukhovich, Machine Learning Intern, Intel Corporation

Gradient boosting on decision trees is one of the most accurate and efficient machine learning algorithms 

for classification and regression. There are many implementations of gradient boosting, but the most 

popular are the XGBoost and LightGBM frameworks. This article will show how to improve the prediction 

speed of XGBoost or LightGBM models up to 36x with Intel® oneAPI Data Analytics Library (oneDAL).

Get Up To 36x Faster Inference Using Intel® oneAPI Data Analytics Library

Improving the Performance of    
XGBoost and LightGBM Inference
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  Gradient Boosting
Many people use XGBoost and LightGBM gradient boosting to solve various real-world problems, conduct 

research, and compete in Kaggle competitions. Although these frameworks give good performance out of 

the box, prediction speed can still be improved. Considering prediction is possibly the most important stage 

of the machine learning workflow, performance improvements can be quite beneficial.

A previous article showed that oneDAL performs gradient boosting inference several times faster than its 

competitors: Fast Gradient Boosting Tree Inference. This performance benefit is now available in XGBoost 

and LightGBM.

  Model Converters
All gradient boosting implementations perform similar operations, and therefore have similar data storage. 

In theory, this facilitates the conversion of trained models from one machine learning framework to another. 

Model converters in oneDAL are designed to help you transfer a trained model from XGBoost or LightGBM 

to oneDAL with just a single line of code. Model converters from other frameworks will soon be available.

The following examples show how to convert XGBoost and LightGBM models to oneDAL. First, get the 

latest version of daal4py for Python 3.6 and higher:

Convert an XGBoost model to oneDAL:
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Convert a LightGBM model to oneDAL:

Note that there is temporary limitation on the use of missing values (NaN) during training and prediction. 

Inference quality might be lower if the data has missing values.

The following example shows how to save and load a model from oneDAL:

By default, oneDAL only returns labels for predicted elements. If you need the probabilities as well, you 

must explicitly ask for them:
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  Performance Comparison
The performance advantage of oneDAL over XGBoost and LightGBM is demonstrated using the following 

off-the-shelf datasets:
 • Mortgage (45 features, ~9M observations)

 • Airline (691 features, one-hot encoding, ~1M observations)

 • Higgs (28 features, 1M observations)

 • MSRank (136 features, 3M observations)

The models were trained in XGBoost and LightGBM, then converted to daal4py. To compare performance 

of stock XGBoost and LightGBM with daal4py acceleration, the prediction times for both original and 

converted models were measured. Figure 1 shows that daal4py is up to 36x faster than XGBoost (24x 

faster on average) and up to 15.5x faster than LightGBM (14.5x faster on average). Note that prediction 

quality remains the same (as measured by mean squared error for regression and accuracy and logistic loss 

for classification).

oneDAL uses the Intel® Advanced Vector Extensions 512 (Intel® AVX-512) instruction set to maximize 

gradient boosting performance on Intel® Xeon® processors. The most commonly-used inference 

operations, such as comparison and random memory access, can be effectively implemented using the 

vpgatherd{d,q} and vcmpp{s,d} instructions in AVX-512. Performance also depends on storage 

efficiency and memory bandwidth. For tree structures, oneDAL uses smart locking of data in memory to 

achieve temporary cache localization (i.e., the state when a subset of trees and a block of observations are 

stored in L1 data cache) so that the majority of memory accesses are satisfied immediately at the L1 level 

with the highest memory bandwidth.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://rapidsai.github.io/demos/datasets/mortgage-data
https://www.stat.purdue.edu/~sguha/rhipe/doc/html/airline.html
https://www.kaggle.com/c/higgs
https://www.microsoft.com/en-us/research/project/mslr/
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/www/us/en/products/processors/xeon.html


Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

68The Parallel Universe

1 Comparing daal4py inference performance to XGBoost (top) and LightGBM (bottom). 
Hardware and software details are below.
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  Final Thoughts
Many applications use XGBoost and LightGBM for gradient boosting, so model converters provide an easy 

way to accelerate inference using oneDAL. They allow XGBoost and LightGBM users to:
 • Use their existing model training code without changes.

 • Do inference up to 36x faster with minimal code changes and no loss of quality.

   Hardware and Software Configuration
Intel® Xeon® Platinum 8275CL (2nd generation Intel Xeon Scalable processors): 2 sockets, 24 cores per 

socket, HT:on, Turbo:on. OS: Ubuntu 18.04.4 LTS (Bionic Beaver), total memory of 192 GB (12 slots/16 

GB/2933 MHz). Software: XGBoost 1.2.1, LightGBM 3.0.0, daal4py version 2020 update 3, Python 3.7.9, 

numpy 1.19.2, pandas 1.1.3, and scikit-learn 0.23.2. Training Parameters: XGBoost and LightGBM.
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