
101 Innovation Drive
San Jose, CA 95134
www.altera.com

FIR Compiler
User Guide

Software Version: 10.1
Document Date: December 2010

http://www.altera.com

Copyright © 2010 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

UG-FIRCOMPILER 10.1

 © December 2010 Altera Corporation
Contents
Chapter 1. About This Compiler
Release Information . 1–1
Device Family Support . 1–1
Features . 1–2
General Description . 1–3
MegaCore Verification . 1–6
Performance and Resource Utilization . 1–6
Installation and Licensing . 1–8

OpenCore Plus Evaluation . 1–8
OpenCore Plus Time-Out Behavior . 1–9

Chapter 2. Getting Started
Design Flows . 2–1
DSP Builder Flow . 2–1
MegaWizard Plug-In Manager Flow . 2–2

Parameterize the MegaCore Function . 2–3
Generate the MegaCore Function . 2–6
Simulate the Design . 2–8

Simulating in ModelSim . 2–8
Simulating in MATLAB . 2–9
Simulating in Third-Party Simulation Tools Using NativeLink . 2–9

Compile the Design and Program a Device . 2–9

Chapter 3. Parameter Settings
Specifying the Coefficients . 3–1

Using the FIR Compiler Coefficient Generator . 3–2
Loading Coefficients from a File . 3–6

Analyzing the Coefficients . 3–8
Specify the Input and Output Specifications . 3–9
Specify the Architecture Specification . 3–11
Resource Estimates . 3–16
Filter Design Tips . 3–16

Chapter 4. Functional Description
FIR Compiler . 4–1

Number Systems and Fixed-Point Precision . 4–1
Generating or Importing Coefficients . 4–1

Coefficient Scaling . 4–2
Symmetrical Architecture Selection . 4–3
Symmetrical Serial . 4–3
Coefficient Reloading and Reordering . 4–4

Structure Types . 4–6
Multicycle Variable Structures . 4–6
Parallel Structures . 4–6
Serial Structures . 4–7
Multibit Serial Structure . 4–7
Multichannel Structures . 4–8

Interpolation and Decimation . 4–8
FIR Compiler User Guide

iv Contents
Implementation Details for Interpolation and Decimation Structures . 4–10
Availability of Interpolation and Decimation Filters . 4–11
Half-Band Decimation Filters . 4–12
Symmetric-Interpolation Filters . 4–12

Pipelining . 4–12
Simulation Output . 4–13
Avalon Streaming Interface . 4–13

Avalon-ST Data Transfer Timing . 4–14
Packet Data Transfers . 4–15

Signals . 4–16
Timing Diagrams . 4–17

Reset and Global Clock Enable Operations . 4–18
Single Rate Filter Timing Diagram . 4–18
Interpolation Filter Timing Diagrams . 4–20
Decimation Filter Timing Diagrams . 4–21
Coefficient Reloading Timing Diagrams . 4–22

Referenced Documents . 4–26

Appendix A. FIR Compiler Supported Device Structures
Supported Device Structures . A–1
HardCopy II Support . A–3

Compiling HardCopy II Designs . A–3

Additional Information
Revision History . Info–1
How to Contact Altera . Info–2
Typographic Conventions . Info–2
FIR Compiler User Guide © December 2010 Altera Corporation

© December 2010 Altera Corporation
1. About This Compiler
Release Information
Table 1–1 provides information about this release of the Altera® FIR Compiler.

f For more information about this release, refer to the MegaCore IP Library Release Notes
and Errata.

Altera verifies that the current version of the Quartus® II software compiles the
previous version of each MegaCore® function. The MegaCore IP Library Release Notes
and Errata report any exceptions to this verification. Altera does not verify
compilation with MegaCore function versions older than one release.

Device Family Support
Table 1–2 defines the device support levels for Altera IP cores.

Table 1–1. FIR Compiler Release Information

Item Description

Version 10.1

Release Date December 2010

Ordering Code IP-FIR

Product ID 0012

Vendor ID 6AF7

Table 1–2. Altera IP Core Device Support Levels

FPGA Device Families HardCopy Device Families

Preliminary support—The IP core is verified with
preliminary timing models for this device family. The IPcore
meets all functional requirements, but might still be
undergoing timing analysis for the device family. It can be
used in production designs with caution.

HardCopy Companion—The IP core is verified with
preliminary timing models for the HardCopy companion
device. The IP core meets all functional requirements, but
might still be undergoing timing analysis for the HardCopy
device family. It can be used in production designs with
caution.

Final support—The IP core is verified with final timing
models for this device family. The IP core meets all
functional and timing requirements for the device family and
can be used in production designs.

HardCopy Compilation—The IP core is verified with final
timing models for the HardCopy device family. The IP core
meets all functional and timing requirements for the device
family and can be used in production designs.
FIR Compiler User Guide

www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf

1–2 Chapter 1: About This Compiler
Features
Table 1–3 shows the level of support offered by the FIR Compiler to each Altera
device family.

Features
The Altera® FIR Compiler implements a finite impulse response (FIR) filter MegaCore
function and supports the following features:

■ The following hardware architectures are supported to enable optimal trade- offs
between logic, memory, DSP blocks, and performance:

■ Fully parallel distributed arithmetic

■ Fully serial distributed arithmetic

■ Multibit serial distributed arithmetic

■ Multicycle variable structures

■ Exploit maximal efficiency designs as a result of FIR Compiler hardware
optimizations such as interpolation, decimation, symmetry, decimation half-band,
and time sharing.

■ Easy system integration using Avalon® Streaming (Avalon-ST) interfaces.

Table 1–3. Device Family Support

Device Family Support

Arria™ GX Final

Arria II GX Preliminary

Arria II GZ Preliminary

Cyclone® Final

Cyclone II Final

Cyclone III Final

Cyclone III LS Preliminary

Cyclone IV Preliminary

HardCopy® II HardCopy Compilation

HardCopy III HardCopy Companion

HardCopy IV E HardCopy Companion

HardCopy IV GX HardCopy Companion

Stratix® Final

Stratix II Final

Stratix II GX Final

Stratix III Final

Stratix IV GT Final

Stratix IV GX/E Final

Stratix V Preliminary

Stratix GX Final

Other device families No support
FIR Compiler User Guide © December 2010 Altera Corporation

Chapter 1: About This Compiler 1–3
General Description
■ Precision control of chip resource utilization:

■ Logic cells, M512, M4K, M-RAM, MLAB, M9K, or M144K for data storage.

■ M512, M4K, M9K, M20K, MLAB or logic cells for coefficient storage.

■ Includes a resource estimator.

■ Support for run-time coefficient reloading capability and multiple coefficient sets.

■ Includes a built-in coefficient generator to enable efficient design space
exploration.

■ User-selectable output precision via rounding and saturation.

■ DSP Builder ready.

General Description
The Altera FIR Compiler provides a fully integrated finite impulse response (FIR)
filter development environment optimized for use with Altera FPGA devices.

You can use the IP Toolbench interface to implement a variety of filter architectures,
including fully parallel, serial, or multibit serial distributed arithmetic, and multicycle
fixed/variable filters. The FIR Compiler includes a coefficient generator.

Many digital systems use signal filtering to remove unwanted noise, to provide
spectral shaping, or to perform signal detection or analysis. Two types of filters that
provide these functions are finite impulse response (FIR) filters and infinite impulse
response (IIR) filters. Typical filter applications include signal preconditioning, band
selection, and low-pass filtering.

In contrast to IIR filters, FIR filters have a linear phase and inherent stability. This
benefit makes FIR filters attractive enough to be designed into a large number of
systems. However, for a given frequency response, FIR filters are a higher order than
IIR filters, making FIR filters more computationally expensive.

The structure of a FIR filter is a weighted, tapped delay line as shown in Figure 1–1.

Figure 1–1. Basic FIR Filter

xin

yout

Z -1 Z -1 Z -1 Z -1

C0 C1 C2 C3

Tapped
Delay Line

Coefficient
Multipliers

Adder Tree
© December 2010 Altera Corporation FIR Compiler User Guide

1–4 Chapter 1: About This Compiler
General Description
The filter design process involves identifying coefficients that match the frequency
response specified for the system. These coefficients determine the response of the
filter. You can change which signal frequencies pass through the filter by changing the
coefficient values or adding more coefficients.

Traditionally, designers have been forced to make a trade-off between the flexibility of
digital signal processors and the performance of ASICs and application-specific
standard product (ASSPs) digital signal processing (DSP) solutions. The Altera DSP
solution reduces the need for this trade-off by providing exceptional performance
combined with the flexibility of FPGAs.

Figure 1–2 compares the design cycle using a FIR Compiler MegaCore function with a
traditional implementation.

Figure 1–2. Design Cycle Comparison

Define & Design Architectural
Blocks

Determine Behavioral
Characteristics of FIR Filter

Calculate Filter Coefficients
(MATLAB)

Determine Hardware Filter
Architecture

Design Structural or Synthesizable
FIR Filter

Simulate

Synthesize & Place & Route

Area/Speed Tradeoff

FIR Filter
Design
6 Weeks

Define & Design Architectural
Blocks

Simulate

Synthesize & Place & Route

FIR Filter Design
1 Day

Specify Filter Characteristics
to FIR Compiler Megafunction
(FIR Compiler Assists in Area/

Speed Tradeoff)

Traditional Flow FIR Compiler Flow
FIR Compiler User Guide © December 2010 Altera Corporation

Chapter 1: About This Compiler 1–5
General Description
Figure 1–3 shows a typical DSP system that uses Altera MegaCore functions.

DSP processors have a limited number of multiply accumulators (MACs), and require
many clock cycles to compute each output value (the number of cycles is directly
related to the order of the filter).

A dedicated hardware solution can achieve one output per clock cycle. A fully
parallel, pipelined FIR filter implemented in an FPGA can operate at very high data
rates, making FPGAs ideal for high-speed filtering applications.

Table 1–4 compares resource usage and performance for different implementations of
a 120-tap FIR filter with a 12-bit data input bus.

The FIR Compiler speeds the design cycle by:

■ Generating the coefficients needed to design custom FIR filters.

■ Generating bit-accurate and clock-cycle-accurate FIR filter models (also known as
bit-true models) in the Verilog HDL and VHDL languages and in the MATLAB
environment.

■ Automatically generating the code required for the Quartus II software to
synthesize high-speed, area-efficient FIR filters of various architectures.

■ Generating a VHDL testbench for all architectures.

Figure 1–3. Typical Modulator System

FEC
Reed Solomon

Encoder

Convolutional
Encoder
(Viterbi)

Constellation
Mapper

Outer Encoding Layer

Output
Data

Input
Data

NCO
Compiler DAC

FIR Compiler

N
LPF

FIR Compiler

N
LPF

Convolutional
Interleaver

Inner Coding Layer

I

Q

Table 1–4. FIR Filter Implementation Comparison (Note 1)

Device Implementation
Clock Cycles to
Compute Result

DSP processor 1 MAC 120

FPGA 1 serial filter 12

1 parallel filter 1

Note to Table 1–4:

(1) If you use the FIR Compiler to create a filter, you can also implement a variable filter in a FPGA that uses from 1
to 120 MACs, and 120 to 1 clock cycles.
© December 2010 Altera Corporation FIR Compiler User Guide

1–6 Chapter 1: About This Compiler
MegaCore Verification
MegaCore Verification
Before releasing an updated version of the FIR Compiler, Altera runs a comprehensive
regression test to verify its quality and correctness.

All features and architectures are tested by sweeping all parameter options and
verifying that the simulation matches a master functional model.

Performance and Resource Utilization
This section shows typical expected performance for a FIR Compiler MegaCore
function with Cyclone III and Stratix IV devices. All figures are given for a FIR filter
with 97 taps, 8-bit input data, 14-bit coefficients, a target fMAX set to 1 GHz.

1 Cyclone III devices use combinational look-up tables (LUTs) and logic registers;
Stratix IV devices use combinational adaptive look-up tables (ALUTs) and logic
registers.

The resource and performance data was generated with the source ready signal
(ast_source_ready) always driven high, as described in “Avalon Streaming
Interface” on page 4–13.

Table 1–5 shows performance figures for Cyclone III devices:

Table 1–5. FIR Compiler Performance—Cyclone III Devices (Part 1 of 2)

Combinational
LUTs

Logic
Registers

Memory (6)
Multipliers

(9x9)
fmax

(MHz)
Throughput

(MSPS)

Processing
Equivalent
(GMACs) (1)Bits M9K

Multibit Serial, pipeline level 1 (2), (3)

899 1,331 55,148 31 — 310 62 6

Multicycle variable (1 cycle) decimation by 4, pipeline level 1 (2), (3)

857 1,336 1,158 12 26 281 281 27

Multicycle variable (1 cycle) interpolation by 4, pipeline level 2 (4)

1,528 2,657 66 1 50 290 290 28

Multicycle variable (1 cycle), pipeline level 2 (2), (4)

2,543 4,837 92 1 98 280 280 27

Multicycle variable (4 cycle), pipeline level 2 (2), (3)

1,182 1,715 578 9 26 283 71 7
FIR Compiler User Guide © December 2010 Altera Corporation

Chapter 1: About This Compiler 1–7
Performance and Resource Utilization
Table 1–6 shows performance figures for Stratix IV devices:

Parallel (LE), pipeline level 1(2), (3)

3,416 3,715 208 3 — 288 288 28

Parallel (M9K), pipeline level 1 (2), (5)

1,948 2,155 120,030 48 — 283 283 27

Serial (M9K), pipeline level 1 (2), (3)

327 462 14,167 8 — 323 36 3

Notes to Table 1–5:

(1) GMAC = giga multiply accumulates per second (1 giga = 1,000 million).
(2) This FIR filter takes advantage of symmetric coefficients.
(3) Using EP3C10F256C6 devices.
(4) Using EP3C16F484C6 devices.
(5) Using EP3C40F780C6 devices.
(6) It may be possible to significantly reduce memory utilization by setting a lower target fMAX.

Table 1–5. FIR Compiler Performance—Cyclone III Devices (Part 2 of 2)

Combinational
LUTs

Logic
Registers

Memory (6)
Multipliers

(9x9)
fmax

(MHz)
Throughput

(MSPS)

Processing
Equivalent
(GMACs) (1)Bits M9K

Table 1–6. FIR Compiler Performance—Stratix IV Devices

Combinational
ALUTs

Logic
Registers

Memory
Multipliers

(18x18)
fmax

(MHz)
Throughput

(MSPS)

Processing
Equivalent
(GMACS) (1)Bits (M9K) ALUTs

Multibit Serial, pipeline level 1 (2), (3), (4)

766 1,166 55,276 42 16 — 503 101 10

Multicycle variable (1 cycle) decimation by 4, pipeline level 1 (2), (3)

336 844 1,400 16 28 14 443 443 43

Multicycle variable (1 cycle) interpolation by 4, pipeline level 2 (3)

200 1,274 64 — 8 24 372 372 36

Multicycle variable (1 cycle), pipeline level 2 (2), (3)

741 1,936 148 1 8 48 443 443 43

Multicycle variable (4 cycle), pipeline level 2 (2), (3)

717 1,398 796 6 36 14 323 81 8

Parallel (LE), pipeline level 1 (2), (3)

2,153 2,672 157 1 8 — 421 421 41

Parallel (M9K), pipeline level 1 (3)

821 1,730 119,872 45 8 — 457 457 44

Serial (M9K), pipeline level 1 (2), (3)

245 415 14,231 11 8 — 523 58 6

Notes to Table 1–6:

(1) GMAC = giga multiply accumulates per second (1 giga = 1,000 million).
(2) This FIR filter takes advantage of symmetric coefficients.
(3) Using EP4SGX70DF29C2X devices.
(4) The data width is 16-bits and there are 4 serial units.
© December 2010 Altera Corporation FIR Compiler User Guide

1–8 Chapter 1: About This Compiler
Installation and Licensing
Installation and Licensing
The FIR Compiler MegaCore function is part of the MegaCore® IP Library, which is
distributed with the Quartus® II software and downloadable from the Altera® website,
www.altera.com.

f For system requirements and installation instructions, refer to the Altera Software
Installation and Licensing manual.

Figure 1–4 shows the directory structure after you install the FIR Compiler, where
<path> is the installation directory for the Quartus II software. The default installation
directory on Windows is c:\altera\<version> and on Linux is /opt/altera<version>.

OpenCore Plus Evaluation
With Altera’s free OpenCore Plus evaluation feature, you can perform the following
actions:

■ Simulate the behavior of a megafunction (Altera MegaCore function or AMPPSM
megafunction) within your system.

■ Verify the functionality of your design, as well as evaluate its size and speed
quickly and easily.

■ Generate time-limited device programming files for designs that include
megafunctions.

■ Program a device and verify your design in hardware.

You only need to purchase a license for the FIR Compiler when you are completely
satisfied with its functionality and performance, and want to take your design to
production.

After you purchase a license, you can request a license file from the Altera website at
www.altera.com/licensing and install it on your computer. When you request a
license file, Altera emails you a license.dat file. If you do not have Internet access,
contact your local Altera representative.

Figure 1–4. Directory Structure

misc
Contains the coef_seq program which calculates and re-orders coefficients for reloading.

lib
Contains encrypted lower-level design files.

ip
Contains the Altera MegaCore IP Library and third-party IP cores.

<path>
Installation directory.

altera
Contains the Altera MegaCore IP Library.

common
Contains shared components.
fir_compiler
Contains the FIR Compiler MegaCore function files.
FIR Compiler User Guide © December 2010 Altera Corporation

www.altera.com
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

Chapter 1: About This Compiler 1–9
Installation and Licensing
f For more information about OpenCore Plus hardware evaluation, refer to
AN320: OpenCore Plus Evaluation of Megafunctions.

OpenCore Plus Time-Out Behavior
OpenCore Plus hardware evaluation supports the following operation modes:

■ Untethered—the design runs for a limited time.

■ Tethered—requires a connection between your board and the host computer. If
tethered mode is supported by all megafunctions in a design, the device can
operate for a longer time or indefinitely.

All megafunctions in a device time-out simultaneously when the most restrictive
evaluation time is reached. If there is more than one megafunction in a design, a
specific megafunction’s time-out behavior might be masked by the time-out behavior
of the other megafunctions.

The untethered timeout for the FIR Compiler MegaCore function is one hour; the
tethered timeout value is indefinite.

The data output signal is forced to zero when the hardware evaluation time expires.
© December 2010 Altera Corporation FIR Compiler User Guide

http://www.altera.com/literature/an/an320.pdf

1–10 Chapter 1: About This Compiler
Installation and Licensing
FIR Compiler User Guide © December 2010 Altera Corporation

© December 2010 Altera Corporation

2. Getting Started
Design Flows
The FIR Compiler MegaCore® function supports the following design flows:

■ DSP Builder: Use this flow if you want to create a DSP Builder model that
includes a FIR Compiler MegaCore function variation.

■ MegaWizard™ Plug-In Manager: Use this flow if you would like to create a FIR
Compiler MegaCore function variation that you can instantiate manually in your
design.

This chapter describes how you can use a FIR Compiler MegaCore function in either
of these flows. The parameterization is the same in each flow and is described in
Chapter 3, Parameter Settings.

After parameterizing and simulating a design in either of these flows, you can
compile the completed design in the Quartus II software.

DSP Builder Flow
Altera’s DSP Builder product shortens digital signal processing (DSP) design cycles
by helping you create the hardware representation of a DSP design in an algorithm-
friendly development environment.

DSP Builder integrates the algorithm development, simulation, and verification
capabilities of The MathWorks MATLAB® and Simulink® system-level design tools
with Altera Quartus® II software and third-party synthesis and simulation tools. You
can combine existing Simulink blocks with Altera DSP Builder blocks and MegaCore
function variation blocks to verify system level specifications and perform simulation.

In DSP Builder, a Simulink symbol for the FIR Compiler appears in the MegaCore
Functions library of the Altera DSP Builder Blockset in the Simulink library browser.

You can use the FIR Compiler in the MATLAB/Simulink environment by performing
the following steps:

1. Create a new Simulink model.

2. Select the FIR Compiler block from the MegaCore Functions library in the
Simulink Library Browser, add it to your model, and give the block a unique
name.

3. Double-click the FIR Compiler block in your model to display IP Toolbench and
click Step 1: Parameterize to parameterize a FIR Compiler MegaCore function
variation. For an example of how to set parameters for the FIR Compiler block,
refer to Chapter 3, Parameter Settings.

4. Click Step 2: Generate in IP Toolbench to generate your FIR Compiler MegaCore
function variation. For information about the generated files, refer to Table 2–1 on
page 2–6.

5. Connect your FIR Compiler MegaCore function variation block to the other
blocks in your model.
FIR Compiler User Guide

2–2 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
6. Simulate the FIR Compiler MegaCore function variation in your DSP Builder
model.

f For more information about the DSP Builder flow, refer to the Using MegaCore
Functions chapter in the DSP Builder User Guide.

1 When you are using the DSP Builder flow, device selection, simulation, Quartus II
compilation and device programming are all controlled within the DSP Builder
environment.

DSP Builder supports integration with SOPC Builder using Avalon® Memory-Mapped
(Avalon-MM) master or slave, and Avalon Streaming (Avalon-ST) source or sink
interfaces.

f For more information about these interface types, refer to the Avalon Interface
Specifications.

MegaWizard Plug-In Manager Flow
The MegaWizard Plug-in Manager flow allows you to customize a FIR Compiler
MegaCore function, and manually integrate the MegaCore function variation into a
Quartus II design.

To launch the MegaWizard Plug-in Manager, perform the following steps:

1. Create a new project using the New Project Wizard available from the File menu
in the Quartus II software.

2. Launch MegaWizard Plug-in Manager from the Tools menu, and select the option
to create a new custom megafunction variation (Figure 2–1).

3. Click Next and select FIR Compiler <version> from the DSP>Filters section in the
Installed Plug-Ins tab. (Figure 2–2).

Figure 2–1. MegaWizard Plug-In Manager
FIR Compiler User Guide © December 2010 Altera Corporation

http://www.altera.com/literature/ug/ug_dsp_builder.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 2: Getting Started 2–3
MegaWizard Plug-In Manager Flow
4. Verify that the device family is the same as you specified in the New Project
Wizard.

5. Select the top-level output file type for your design; the wizard supports VHDL
and Verilog HDL.

6. Specify the top level output file name for your MegaCore function variation and
click Next to launch IP Toolbench (Figure 2–3 on page 2–4).

Parameterize the MegaCore Function
To parameterize your MegaCore function variation, perform the following steps:

1. Click Step 1: Parameterize in IP Toolbench to display the Parameterize - FIR
Compiler window. Use this interface to specify the required parameters for the
MegaCore function variation. For an example of how to set parameters for the FIR
Compiler MegaCore function, refer to Chapter 3, Parameter Settings.

Figure 2–2. Selecting the MegaCore Function
© December 2010 Altera Corporation FIR Compiler User Guide

2–4 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
2. Click Step 2: Setup Simulation in IP Toolbench to display the Set Up Simulation -
FIR Compiler page (Figure 2–4).

3. Turn on Generate Simulation Model to create an IP functional model.

1 An IP functional simulation model is a cycle-accurate VHDL or Verilog
HDL model produced by the Quartus II software.

Figure 2–3. IP Toolbench—Parameterize

Figure 2–4. Set Up Simulation
FIR Compiler User Guide © December 2010 Altera Corporation

Chapter 2: Getting Started 2–5
MegaWizard Plug-In Manager Flow
c Use the simulation models only for simulation and not for synthesis or any
other purposes. Using these models for synthesis creates a non-functional
design.

4. Select the required language from the Language list.

5. Click the MATLAB M-File tab on the Set Up Simulation page (Figure 2–5).

6. Turn on the Generate MathWorks MATLAB M-File option.

This option generates a MATLAB m-file script that contains functions you can use
to analyze a FIR Compiler design in the MATLAB environment. A testbench is also
generated.

7. Click Finish.

1 The Quartus II Testbench tab contains an option that is not used in this version of the
FIR Compiler and should be ignored.

Figure 2–5. Create a MATLAB M-File
© December 2010 Altera Corporation FIR Compiler User Guide

2–6 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
Generate the MegaCore Function
To generate your MegaCore function variation, perform the following steps:

1. Click Step 3: Generate in IP Toolbench to generate your MegaCore function
variation and supporting files. The generation phase may take several minutes to
complete. The generation progress and status is displayed in a report window.

Figure 2–6 shows the generation report.

Table 2–1 describes the IP Toolbench-generated files and other files that may be in
your project directory. The names and types of files specified in the report vary
based on whether you created your design with VHDL or Verilog HDL.

Figure 2–6. Generation Report - FIR Compiler MegaCore Function

Table 2–1. Generated Files (Part 1 of 2) (Note 1) ,(2)

Filename Description

<entity name>.vhd A VHDL wrapper file for the Avalon-ST interface.

<variation name>.bsf A Quartus II block symbol file for the MegaCore function variation. You can use this
file in the Quartus II block diagram editor.

<variation name>.cmp A VHDL component declaration file for the MegaCore function variation. Add the
contents of this file to any VHDL architecture that instantiates the MegaCore function.

<variation name>.html A MegaCore function report file in hypertext markup language format.

<variation name>.qip A single Quartus II IP file is generated that contains all of the assignments and other
information required to process your MegaCore function variation in the Quartus II
compiler. You are prompted to add this file to the current Quartus II project when you
exit from IP Toolbench.
FIR Compiler User Guide © December 2010 Altera Corporation

Chapter 2: Getting Started 2–7
MegaWizard Plug-In Manager Flow
<variation name>.vec Quartus II vector file. This file provides simulation test vectors to be used for
simulating the customized FIR MegaCore function variation with the Quartus II
software.

<variation name>.vhd or .v A VHDL or Verilog HDL file that defines a VHDL or Verilog HDL top-level description
of the custom MegaCore function variation. Instantiate the entity defined by this file
inside of your design. Include this file when compiling your design in the Quartus II
software.

<variation name>.vho or .vo A VHDL or Verilog HDL output file that defines the IP functional simulation model.

<variation name>_bb.v A Verilog HDL black-box file for the MegaCore function variation. Use this file when
using a third-party EDA tool to synthesize your design.

<variation name>_coef_in_mlab.txt

<variation name>_coef_int.txt

Text files that provides coefficient inputs for the MATLAB testbench model.

<variation name>_coef_n_inv.hex

<variation name>_coef_n.hex

<variation name>_zero.hex

Memory initialization files in INTEL Hex format. These files are required both for
simulation with IP functional simulation models and synthesis using the Quartus II
software.

<variation name>_constraints.tcl Constraints setting Tcl file for Quartus II synthesis. This file contains the necessary
constraints to achieve FIR Filter size and speed.

<variation name>_input.txt This text file provides simulation data for the MATLAB model and the simulation
testbench.

<variation name>_mlab.m This MATLAB M-File provides the kernel of the MATLAB simulation model for the
customized FIR MegaCore function variation.

<variation name>_model.m This MATLAB M-File provides a MATLAB simulation model for the customized FIR
MegaCore function variation.

<variation name>_msim.tcl This Tcl script can be used to simulate the VHDL testbench together with the
simulation model of the customized FIR MegaCore function variation.

<variation name>_nativelink.tcl A Tcl script that can be used to assign NativeLink simulation testbench settings to the
Quartus II project.

<variation name>_param.txt This text file records all output parameters for customized FIR MegaCore function
variation.

<variation name>_silent_param.txt This text file records all input parameters for customized FIR MegaCore function
variation.

<variation name>_core.vhd

<variation name>_st.v

<variation name>_st_s.v

<variation name>_st_u.v

<variation name>_st_wr.v

Generated FIR Filter netlists. These files are required for Quartus II synthesis and are
added to your current Quartus II project.

tb_<variation name>.vhd This VHDL file provides a testbench for the customized FIR MegaCore function
variation.

Notes to Table 2–1

(1) <variation name> is a prefix variation name supplied automatically by IP Toolbench.
(2) The <entity name> prefix is added automatically. The VHDL code for each MegaCore instance is generated dynamically when you click Finish

so that the <entity name> is different for every instance. It is generated from the <variation name> by appending _ast.

Table 2–1. Generated Files (Part 2 of 2) (Note 1) ,(2)

Filename Description
© December 2010 Altera Corporation FIR Compiler User Guide

2–8 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
The generation report also lists the ports defined in the MegaCore function
variation file (Figure 2–7). For a full description of the signals supported on
external ports for your MegaCore function variation, refer to Table 4–3 on
page 4–16.

2. After you review the generation report, click Exit to close IP Toolbench. Then click
Yes on the Quartus II IP Files prompt to add the .qip file describing your custom
MegaCore function variation to the current Quartus II project.

Simulate the Design
To simulate your design in Verilog HDL or VHDL, use the IP functional simulation
models generated by IP Toolbench.

The IP functional simulation model is the .vo or .vho file (located in your design
directory) generated as specified in Step 1 on page 2–3.

f For more information about IP functional simulation models, refer to the Simulating
Altera Designs chapter in volume 3 of the Quartus II Handbook.

Simulating in ModelSim
A Tcl script (<variation name>_msim.tcl) is also generated which can be used to load
the VHDL testbench into the ModelSim simulator.

This script uses the file <variation name>_input.txt to provide input data to the FIR
filter. The output from the simulation is stored in a file <variation name>_output.txt.

Figure 2–7. Port Lists in the Generation Report
FIR Compiler User Guide © December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 2: Getting Started 2–9
MegaWizard Plug-In Manager Flow
Simulating in MATLAB
To simulate in a MATLAB environment, run the <variation_name>_model.m testbench
m-script, which also is located in your design directory. This script also uses the file
<variation name>_input.txt to provide input data. The output from the MATLAB
simulation is stored in the file <variation name>_model_output.txt.

For MCV decimation filters, the <variation name>_model_output_full.txt file is
generated to display all the phases of the filter. You can compare this file with the
<variation name>_output.txt file to understand which phase the output belongs. For
all other architectures, decimation filters provide the Nth phase where N is the
decimation factor.

Simulating in Third-Party Simulation Tools Using NativeLink
You can perform a simulation in a third-party simulation tool from within the
Quartus II software, using NativeLink.

The Tcl script file <variation name>_nativelink.tcl can be used to assign default
NativeLink testbench settings to the Quartus II project.

To perform a simulation in the Quartus II software using NativeLink, perform the
following steps:

1. Create a custom MegaCore function variation as described earlier in this chapter
but ensure you specify your variation name to match the Quartus II project name.

2. Verify that the absolute path to your third-party EDA tool is set in the Options
page under the Tools menu in the Quartus II software.

3. On the Processing menu, point to Start and click Start Analysis & Elaboration.

4. On the Tools menu, click Tcl scripts. In the Tcl Scripts dialog box, select
<variation name>_nativelink.tcl and click Run. Check for a message confirming
that the Tcl script was successfully loaded.

5. On the Assignments menu, click Settings, expand EDA Tool Settings, and select
Simulation. Select a simulator under Tool name then in NativeLink Settings,
select Compile test bench and click Test Benches.

6. On the Tools menu, point to EDA Simulation Tool and click Run EDA RTL
Simulation.

The Quartus II software selects the simulator, and compiles the Altera libraries,
design files, and testbenches. The testbench runs and the waveform window
shows the design signals for analysis.

f For more information, refer to the Simulating Altera Designs chapter in volume 3 of the
Quartus II Handbook.

Compile the Design and Program a Device
You can use the Quartus II software to compile your design.

After you have compiled your design, program your targeted Altera device and
verify your design in hardware.

f For instructions on compiling and programming your design, and more information
about the MegaWizard Plug-In Manager flow, refer to the Quartus II Help.
© December 2010 Altera Corporation FIR Compiler User Guide

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

2–10 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
FIR Compiler User Guide © December 2010 Altera Corporation

© December 2010 Altera Corporation
3. Parameter Settings
This chapter gives an example of how to parameterize a FIR Compiler MegaCore®
function and describes the available parameters.

The Parameterize - FIR Compiler pages provide the same options whether they have
been opened from the DSP Builder or MegaWizard Plug-In Manager flow.

For information about opening the parameterization pages, refer to “Design Flows”
on page 2–1.

1 The user interface only allows you to select legal combinations of parameters, and
warns you of any invalid configurations.

Specifying the Coefficients
A FIR filter is defined by its coefficients. The FIR Compiler provides the following
options for obtaining coefficients:

■ You can use the FIR Compiler to generate coefficients. The coefficient generator
supports single rate, interpolation, and decimation rate specification filter types.
For information about generating coefficients for these filter types, refer to “Using
the FIR Compiler Coefficient Generator” on page 3–2.

■ You can load coefficients from a file. For example, you can create the coefficients in
another application such as MATLAB, SPW, or a user-created program, save them
to a file, and import them into the FIR Compiler. For more information, refer to
“Loading Coefficients from a File” on page 3–6.)

Figure 3–1 on page 3–2 shows the Parameterize - FIR Compiler page.

You can click New Coefficient Set on this page to define or load new coefficients.
Alternatively, or you can click Edit Coefficient Set to edit the default coefficient set or
Remove Coefficient Set to clear the currently loaded coefficients.
FIR Compiler User Guide

3–2 Chapter 3: Parameter Settings
Specifying the Coefficients
Using the FIR Compiler Coefficient Generator
1. Click New Coefficient Set in the Parameterize - FIR Compiler page to open the

Coefficients Generator dialog box.

You can use this dialog box to specify parameters for the coefficients, including the
filter type, window type, sample rate, and excess bandwidth (for use with cosine
filters).

Figure 3–2 on page 3–3 shows the default values for a low pass filter.

Figure 3–1. IP Toolbench Parameterize Page
FIR Compiler User Guide © December 2010 Altera Corporation

Chapter 3: Parameter Settings 3–3
Specifying the Coefficients
2. To generate the coefficients for a simple parallel filter, use the Coefficients
Generator dialog box to make the settings listed in Table 3–1.

Figure 3–2. Coefficients Generator Dialog Box Showing Default Low Pass Filter Parameters

Table 3–1. Coefficients Generator Parameter Settings for a Simple Parallel Filter

Parameter Value

Rate Specification Single Rate

Filter Type Band Pass

Coefficients 77

Cutoff Freq. 1 5e+006

Window Type Hamming

Sample Rate: 50e+006

Cutoff Freq. 2 10e+006
© December 2010 Altera Corporation FIR Compiler User Guide

3–4 Chapter 3: Parameter Settings
Specifying the Coefficients
3. After making your settings, click Apply. The dialog box displays the frequency
response of the filter in blue and also displays a list of the actual coefficient values.
(Figure 3–3).

4. To generate floating-point coefficients for interpolation or decimation rate filters,
select Interpolation or Decimation and the required Factor from the Rate
Specification drop-down boxes.

When you click Auto Generate, IP Toolbench generates coefficients for a low-pass
filter with a cutoff frequency based on the specified rate.

Figure 3–4 on page 3–5 shows a decimation filter. The cut-off frequency is ¼ of the
sampling rate and results in a half-band coefficient set.

For an explanation of interpolation and decimation, refer to “Interpolation and
Decimation” on page 4–8.

Figure 3–3. Parallel FIR Filter Coefficient Parameters for Band Pass Filter
FIR Compiler User Guide © December 2010 Altera Corporation

Chapter 3: Parameter Settings 3–5
Specifying the Coefficients
5. Click OK when you have finished making the parameter settings.

The Parameterize - FIR Compiler page (Figure 3–1 on page 3–2) is updated to
display the frequency response of the floating coefficients in blue and the
frequency response of the fixed coefficients in green.

You can click the Time Response & Coefficient Values tab to list the coefficients
as shown in Figure 3–5 on page 3–6.

Figure 3–4. Low-Pass Filter Results for an Interpolation Filter
© December 2010 Altera Corporation FIR Compiler User Guide

3–6 Chapter 3: Parameter Settings
Specifying the Coefficients
Loading Coefficients from a File
To load a coefficient set from a file, perform the following steps:

1. Click New Coefficient Set in the Parameterize - FIR Compiler page (Figure 3–1
on page 3–2); then select Imported Coefficient Set in the Coefficients Generator
dialog box (Figure 3–6 on page 3–7).

Figure 3–5. IP Toolbench Parameterize Page, Time Response and Coefficient Values Tab
FIR Compiler User Guide © December 2010 Altera Corporation

Chapter 3: Parameter Settings 3–7
Specifying the Coefficients
2. Browse in the file system for the file you want to use, and click Open.

Your coefficient file should have each coefficient on a separate line and no carriage
returns at the end of the file. You can use floating-point or fixed-point numbers, as
well as scientific notation.

1 Do not insert additional carriage returns at the end of the file. The FIR
Compiler interprets each carriage return as an extra coefficient with the
value of the most recent past coefficient. The file should have a minimum of
five non-zero coefficients.

3. Click OK to import your coefficient set.

Figure 3–6. Importing a Coefficient Set

Note to Figure 3–6:

(1) The radio buttons for the Floating Coefficient Set and Imported Coefficient Set parameters are linked together; selecting one disables the other.
© December 2010 Altera Corporation FIR Compiler User Guide

3–8 Chapter 3: Parameter Settings
Analyzing the Coefficients
Analyzing the Coefficients
The FIR Compiler contains a coefficient analysis tool, which you can use to create sets
of coefficients and perform actions on each set.

Some actions, such as scaling, apply to all sets. Other actions, such as recreating,
reloading, or deleting, apply to the set you are currently viewing.

The FIR Compiler supports up to 16 sets of coefficients. You can switch between sets
using the coefficient tabs in the Parameterize - FIR Compiler page. (The coefficient
sets are numbered, for example, Low Pass Set 1, Low Pass Set 2 and so on.)

When you select a set, the frequency response of the floating-point coefficients is
displayed in blue, and the frequency response of the fixed-point coefficients in green.
You can also view the actual coefficient values. by clicking the Time Response &
Coefficient Values tab.

The FIR Compiler supports two’s complement, signed binary fractional notation,
which allows you to monitor which bits are preserved and which bits are removed
during filtering. A signed binary fractional number has the format:

<sign> <integer bits>.<fractional bits>

A signed binary fractional number is interpreted as shown below:

<sign> <x1 integer bits>.<y1 fractional bits> Original input data

<sign> <x2 integer bits>.<y2 fractional bits> Original coefficient data

<sign> <i integer bits>.<y1 + y2 fractional bits> Full precision after FIR calculation

<sign> <x3 integer bits>.<y3 fractional bits> Output data after limiting precision

where i = ceil(log2(number of coefficients)) + x1 + x2

If, for example, the number has 3 fractional bits and 4 integer bits plus a sign bit, the
entire 8-bit integer number is divided by 8, which yields a number with a binary
fractional component.

1 DSP Builder incorporates the sign bit as part of the integer bits. Thus, if you are using
the FIR filter in a DSP Builder design, DSP builder will recognize the sign bit as an
additional integer bit.

When converted to decimal numbers, certain fractions have an infinite number of
binary bits. For example, converting 1/3 to a decimal number yields 0.333n with n
representing an infinite number of 3s. Similarly, numbers such as 1/10 cannot be
represented in a finite number of binary digits with full precision. If you use signed
binary fractional notation, the FIR Compiler uses the fractional number that most
closely matches the original number for the number of bits of precision you select.

For this tutorial, select Auto for Coefficients Scaling and 12 for the Coefficient Bit
Width.

1 Auto scaling (without the power of two option) provides the maximum signal-to-
noise ratio. All other scaling factors such as Signed Binary Fractional can result in a
loss of effective bits (that is, where each effective bit provides 6dB of SNR).
FIR Compiler User Guide © December 2010 Altera Corporation

Chapter 3: Parameter Settings 3–9
Specify the Input and Output Specifications
Figure 3–7 shows the result after you have made the selections. Note that the side
lobes of the fixed-point frequency response decrease when you change the bit width
from 8 (the default) to 12.

Specify the Input and Output Specifications
You can specify the Number of Input Channels (that is, the number of data streams
that generate an output for each stream) and the Input Number System in the
Parameterize - FIR Compiler page (Figure 3–7).

Figure 3–7. Analyzing the Coefficients
© December 2010 Altera Corporation FIR Compiler User Guide

3–10 Chapter 3: Parameter Settings
Specify the Input and Output Specifications
The FIR Compiler calculates how many bits your filter requires for full resolution
using two methods: actual coefficients or the coefficient bit widths. These parameters
define the maximum positive and negative output values. Select either Bit Width
Only or Actual Coefficients in the Output Specification drop-down box. The FIR
Compiler will extrapolate the number of bits required to represent that range of
values. For full precision, you must use this number of bits in your system.

1 If your filter has coefficient reloading or multiple sets of coefficients, you must select
Bit Width Only.

You can use full or limited precision for the filtered output (out). To use full precision,
leave the Output Number System set to Full Resolution (default). To limit the
precision, select Custom Resolution or Signed Binary Fractional from the drop down
box.

When the Output Number System is set to Custom Resolution, you can choose to
truncate or saturate the most significant bit (MSB) and to truncate or round the least
significant bit (LSB). Saturation, truncation, and rounding are non-linear operations.

Table 3–2 shows the options for limiting the precision of your filter.

Figure 3–8 shows an example of removing bits from the MSB and LSB.

Alternatively, you can select Signed Binary Fractional notation and specify the
number of bits to keep. The FIR Compiler displays how many bits are removed.

Table 3–2. Options for Limiting Precision

Bit Range Option Result

MSB Truncate In truncation, the filter disregards specified bits. (Figure 3–8).

Saturate In saturation, if the filtered output is greater than the maximum positive
or negative value that can be represented, the output is forced (or
saturated) to the maximum positive or negative value.

LSB Truncate Same process as for MSB.

Round The output is rounded away from zero.

Figure 3–8. Removing Bits from the MSB and LSB

D15
D14
D13
D12
D11
D10
D9
D8
.
.
D0

D9
D8
.
.
D0

Bits Removed from MSB

Full
Precision

Limited
Precision

D15
D14
.
.
.
.
D4
D3
D2
D1
D0

D11
D10
.
.
.
D1
D0

Bits Removed from LSB

Full
Precision

Limited
Precision

D15
D14
D13
D12
.
.
.
D3
D2
D1
D0

D10
D9
.
.
.
D1
D0

Bits Removed from both MSB & LSB

Full
Precision

Limited
Precision
FIR Compiler User Guide © December 2010 Altera Corporation

Chapter 3: Parameter Settings 3–11
Specify the Architecture Specification
When adjusting the input and output specification, follow these tips:

■ Truncating from the MSB reduces logic resources more than saturation.

■ The Number of Input Channels option is useful for designs such as modulators
and demodulators, which have I and Q channels. If you are designing this type of
application, select 2 input channels. This tutorial uses the default settings.

Specify the Architecture Specification
You are now ready to select the architecture parameters from the lower half of the
Parameterize - FIR Compiler page.

The FIR Compiler supports several filter structures, including:

■ Variable/Fixed coefficient: Multicycle

■ Distributed arithmetic: Fully Parallel Filter

■ Distributed arithmetic: Fully Serial Filter

■ Distributed arithmetic: Multibit Serial Filter

1 For maximum clock speed, select the Distributed Arithmetic: Fully Serial Filter
structure. (For Stratix, Stratix II, Stratix III, or Stratix IV devices, using smaller
memory resources for coefficient and data storage is faster than using larger memory
resources.) For maximum throughput, select the Distributed Arithmetic: Fully Parallel
structure.

When reloading coefficients, a multicycle variable FIR filter structure has a short
reloading time compared to a fixed FIR filter. Additionally, smaller memory blocks
have a shorter reloading time than larger memory blocks.

Table 3–3 describes the relative trade-offs for the different architecture options.

For more information about the filter architectures and how they operate, refer to
“FIR Compiler” on page 4–1.

Table 3–3. Architecture Trade-Offs

Technology Option Area Speed (Data Throughput)

Distributed
arithmetic

Fully parallel Large area Creates a fast filter: 140 to over 300 MSPS throughput with
pipelining in Stratix II devices.

Distributed
arithmetic

Fully serial Small area Requires multiple clock cycles for a single computation.

Distributed
arithmetic

Multibit
serial

Medium area Uses several serial units to increase throughput.This results
in greater throughput than fully serial, but less throughput
than fully parallel.

DSP block
multiplier

Multicycle Area depends on the number
of calculation cycles selected
(area increases as the number
of calculation cycles increases)

Data throughput increases as the number of calculation
cycles decreases. This architecture takes advantage of
Stratix, Stratix II, Stratix III, or Stratix IV DSP Blocks, and
Cyclone II Multipliers.

Available
option for all
architectures

Pipelining Creates a higher performance
filter with an area increase.

Increases throughput with additional latency and size
increase.
© December 2010 Altera Corporation FIR Compiler User Guide

3–12 Chapter 3: Parameter Settings
Specify the Architecture Specification
Table 3–4, Table 3–5, Table 3–6, and Table 3–7 describe the FIR Compiler options that
are available for each architecture.

Table 3–4. Multicycle Filter Architecture (Note 1)

Parameter Description

Clocks to Compute Specifies the number of clock cycles required to compute a result. Using more clock cycles to
compute a result reduces the filter resource usage. The number of multipliers the filter uses is equal
to the number of taps divided by the number of clock cycles to compute the result.

Data Storage Specifies the device resources used for data storage. You can select Logic Cells, M512, M4K,
M-RAM, MLAB, M9K, M144K, or Auto. If you select Auto, the Quartus II software may store data in
logic cells or memory, depending on the resources in the selected device, the size of the data
storage, the number of clock cycles to compute a result, and the number of input channels.

The option list changes depending on which device you select and the number of clock cycles to
compute a result. Choosing embedded memory reduces logic cell usage and may increase the
speed of the filter.

Coefficient Storage Specifies the device resources used for coefficient storage. You can select Logic Cells, M512, M4K,
MLAB, M9K, or Auto. If you select Auto, the Quartus II software automatically selects the most
appropriate memory block size for the selected device.

The option list changes depending on which device you select and the number of clock cycles to
compute a result. Choosing embedded memory reduces logic cell usage and may increase the
speed of the filter.

Multiplier
Implementation

Specify the device resources used to implement the multiplier. You can select Logic Cells, DSP
Blocks, or Auto. If you select Auto, the Quartus II software turns on the DSP Block Balancing logic
option.

Using embedded DSP blocks results in a smaller and faster design in a device with enough DSP
blocks for all multipliers. The most efficient use of DSP block is for 9×9 (in groups of 8) or 18×18
(in groups of 4) multipliers.

Force Non-Symmetric
Structure

If you want to create a design that uses both symmetric and non-symmetric coefficients, turn on
this option.

Non-symmetric architectures may use more resources.

Coefficients Reload Turn on this option to allow coefficient reloading.

Pipeline Level When you turn on this option, FIR Compiler creates a higher performance filter that uses more
device resources.

Use Single Clock Use this option when creating designs with DSP Builder. This option is only available when
Coefficients Reload is on and M512, M4K, MLAB or M9K is specified in Coefficient Storage.

This option ties the coef_clk_in and clk signals together.

Note to Table 3–4:

(1) When the input data is unsigned, the input data bit width should be greater than or equal to one. When the input data is signed, the input data
bit width should be greater than or equal to two.
FIR Compiler User Guide © December 2010 Altera Corporation

Chapter 3: Parameter Settings 3–13
Specify the Architecture Specification
Table 3–5. Fully Serial Filter Architecture (Note 1)

Parameter Description

Data Storage Specifies the device resources used for data storage. You can select Logic Cells, M512, M4K,
M-RAM, MLAB, M9K, M144K, or Auto. If you select Auto, the Quartus II software may store data in
logic cells or memory, depending on the resources in the selected device, the size of the data
storage, and the number of input channels.

Coefficient Storage Specifies the device resources used for coefficient storage. You can select Logic Cells, M512,
M4K, MLAB, M9K, or Auto. If you select Auto, the Quartus II software automatically selects the
most appropriate memory block size for the selected device.

The option list changes depending on which device you select. Selecting embedded memory
reduces logic cell usage and may increase the speed of the filter.

Force Non-Symmetric
Structure

If you want to create a design that uses both symmetric and non-symmetric coefficients, turn on
this option.

Symmetric algorithms require an extra clock cycle per calculation cycle, which leads to lower
throughput.

Coefficients Reload If you want to change coefficients, turn on this option. This option is available when you choose to
store coefficients in embedded memory.

Selecting this option increases resource usage, turns off several optimization schemes, and adds
additional input ports to the filter.

Pipeline Level Creates a higher performance filter with a resource usage increase.

Use Single Clock Use this option when creating designs with DSP Builder. This option is only available when
Coefficients Reload is selected and M512, M4K, MLAB or M9K is specified in Coefficient Storage.

This option ties the coef_in_clk and clk signals together.

Note to Table 3–5:

(1) The input data bit width should be greater than or equal to four.

Table 3–6. Multibit Serial Filter Architecture (Part 1 of 2) (Note 1)

Parameters Description

Number of Serial
Units

Specifies the number of serial units needed to make the filter. You can select 2, 3, or 4. The
calculation cycles of each result are reduced to one nth of the corresponding serial filter, where n is
the number of serial units. Correspondingly, there is an increase in resource utilization.

Data Storage Specifies the device resources used for data storage. You can select Logic Cells, M512, M4K, M-
RAM, MLAB, M9K, M144K, or Auto. If you select Auto, the Quartus II software selects the type of
embedded memory blocks, depending on the resources in the selected device, the size of the data
storage, the number of clock cycles to compute a result, and the number of input channels.

The option list changes depending on which device you select and whether you select multirate
(interpolation or decimation). Choosing embedded memory reduces logic cell usage and may
increase the speed of the filter.

Coefficient Storage Specifies the device resources used for coefficient storage. You can select Logic Cells, M512, M4K,
MLAB, M9K, or Auto. If you select Auto, the Quartus II software automatically selects the most
appropriate memory block size for the selected device.

The option list changes depending on which device you select. Selecting embedded memory
reduces logic cell usage and may increase the speed of the filter.

Force Non-Symmetric
Structure

If you want to create a design that uses both symmetric and non-symmetric coefficients, turn on
this option.

Symmetric algorithms require an extra clock cycle per calculation cycle, which leads to lower
throughput.
© December 2010 Altera Corporation FIR Compiler User Guide

3–14 Chapter 3: Parameter Settings
Specify the Architecture Specification
Coefficient Reload If you want to change coefficients, turn on this option. This option is available when you choose to
store coefficients in embedded memory.

Selecting this option increases resource usage, turns off several optimization schemes, and adds
additional input ports to the filter.

Pipeline Level Creates a higher performance filter with a resource usage increase.

Use Single Clock Use this option when creating designs with DSP Builder. This option is only available when
Coefficients Reload is selected and M512, M4K, MLAB or M9K is specified in Coefficient Storage.

This option ties the coef_clk_in and clk signals together.

Note to Table 3–6:

(1) The bit width of input data should divide evenly by the number of serial units and result of division must be greater than or equal to four.

Table 3–7. Fully Parallel Filter Architecture (Note 1)

Parameters Description

Data Storage Specifies the device resources used for data storage. You can select Logic Cells or Auto. If you
select Auto, the Quartus II software may store data in logic cells or memory, depending on the
resources in the selected device, the size of the data storage, and the number of input channels.

Coefficient Storage Specifies the device resources used for coefficient storage. You can select Logic Cells, M512,
M4K, MLAB, M9K, or Auto. If you select Auto, the Quartus II software automatically selects the
most appropriate memory block size for the selected device.

The option list changes depending on which device you select. Selecting embedded memory
reduces logic cell usage and may increase the speed of the filter.

Force Non-Symmetric
Structure

If you want to create a design that uses both symmetric and non-symmetric coefficients, turn on
this option. Non-symmetric architectures may use more resources.

This option is available when coefficients are stored in the embedded memory.

Coefficient Reload If you want to change coefficients, turn on this option. This option is available when you choose to
store coefficients in embedded memory.

Selecting this option increases resource usage, turns off several optimization schemes, and adds
additional input ports to the filter.

Pipeline Level Creates a higher performance filter with a resource usage increase.

Use Single Clock Use this option when creating designs with DSP Builder. This option is only available when
Coefficients Reload is selected and M512, M4K, MLAB or M9K is specified in Coefficient Storage.

This option ties the coef_clk_in and clk signals together.

Note to Figure 3–6:

(1) When input data is unsigned, the input data bit width should be greater than or equal to one. When input data is signed, the input data bit width
should be greater than or equal to two.

Table 3–6. Multibit Serial Filter Architecture (Part 2 of 2) (Note 1)

Parameters Description
FIR Compiler User Guide © December 2010 Altera Corporation

Chapter 3: Parameter Settings 3–15
Specify the Architecture Specification
1. For this tutorial, select Distributed Arithmetic: Fully Parallel Filter structure with
a pipeline level of 3.

Although these settings create a filter that uses a large number of logic cells,
increasing the pipeline level to 3 decreases the number of clock cycles to one,
thereby greatly increasing system performance. These settings are shown in
Figure 3–9.

2. Click Finish when you have set the architecture parameters.

Figure 3–9. Specify the Filter Architecture
© December 2010 Altera Corporation FIR Compiler User Guide

3–16 Chapter 3: Parameter Settings
Resource Estimates
Resource Estimates
The FIR Compiler automatically calculates and displays the estimated resources that
the filter will use in the Resource Estimates box of the Architecture Specification
section (Parameterize FIR Compiler page).

The FIR Compiler provides the estimated size in embedded memory blocks, DSP
blocks, and logic cells. The Throughput box displays the number of clock cycles
required to compute the result (Figure 3–10).

1 The resource usage estimate may differ from Quartus II resource usage by +/- 30%,
depending on which optimization method you use in the Quartus II software.
Additionally, the resource estimator is less accurate for small filters (500 logic cells or
less). For small filters, compile the design in the Quartus II software to obtain the
resource usage.

Filter Design Tips
This section provides some additional tips for using the FIR Compiler:

■ To prevent high-pass filters from rolling off near Nyquist, select an odd number of
taps.

■ You can import coefficients from the MATLAB software into the FIR Compiler via
a text file. Simply save your coefficients as fixed or floating-point numbers to an
ASCII file, one coefficient per line.

■ To make a quadrature phase shift keying (QPSK), quadrature amplitude
modulation (QAM), or phase shift keying (PSK) modulator or demodulator using
the FIR Compiler, create a multichannel filter by indicating two or more channels
on the input specification area.

■ A comb filter is a filter that has repetitive notches. You can make a comb filter by
first making a single-notch filter, and then using sub-sampling. The process of sub-
sampling reflects or mirrors the notches in the frequency domain at all frequencies
above Nyquist.

Figure 3–10. Resource Estimates
FIR Compiler User Guide © December 2010 Altera Corporation

Chapter 3: Parameter Settings 3–17
Filter Design Tips
■ When importing floating-point coefficients, you should apply a scaling factor to
generate fixed-point integer numbers. Because coefficients are rounded to the
nearest integer, the scaling (or gain) factor can be set to zero—i.e., if it is too small.
If you do not scale the coefficients appropriately, you may have a filter with many
zeros.

■ The highest throughput filters are parallel filters with extended pipelining that
generate an output for every clock cycle.

■ Altera recommends that you use memory blocks to reduce the area.

■ The FIR filter typically runs at a higher fmax if the following constraints are set:

set_global_assignment -name "PHYSICAL_SYNTHESIS_COMBO_LOGIC" "ON"
set_global_assignment -name "PHYSICAL_SYNTHESIS_REGISTER_RETIMING" "ON"

■ Standard Fit (highest effort) is recommended for the fitter settings in the Quartus II
software to achieve optimum synthesis results.

■ To enable the decimation half-band optimized architecture, data storage and
coefficient storage should be set to either Auto or one of the available block
memories. Then select the filter tap value to be an odd number. The coefficient set
should be symmetric and every other coefficient value should be 0.

■ To enable the symmetric-interpolation optimized architecture, data storage and
coefficient storage should be set to either Auto or one of the available block
memories. The number of taps should be an odd value. Currently only even
symmetry is supported.
© December 2010 Altera Corporation FIR Compiler User Guide

3–18 Chapter 3: Parameter Settings
Filter Design Tips
FIR Compiler User Guide © December 2010 Altera Corporation

© December 2010 Altera Corporation
4. Functional Description
FIR Compiler
The FIR Compiler has an interactive wizard-driven interface that allows you to easily
create custom FIR filters. The wizard outputs IP functional simulation model files for
use with Verilog HDL and VHDL simulators.

Number Systems and Fixed-Point Precision
The FIR Compiler function supports signed or unsigned fixed-point numbers from 4-
to 32-bits-wide in two's complement and signed binary fractional formats.

The entire filter operates in a single number system. The coefficient precision is
independent of input data width; you can specify the output precision.

Generating or Importing Coefficients
You can use the FIR Compiler function to create coefficients, or you can create them
using another application such as MATLAB, save them as an ASCII file, and read
them into the FIR Compiler.

Coefficients can be expressed as floating-point or integer numbers; each one must be
listed on a separate line.

1 If you specify negative values for the coefficients, the FIR Compiler generates a two’s
complement signed number.

Figure 4–1 shows the contents of a sample coefficient text file.

The FIR Compiler automatically creates coefficients (with a user-specified number of
taps) for the following filters:

■ Low Pass

■ High Pass

■ Band Pass

Figure 4–1. Sample Filter Coefficients

-3.09453e-005
-0.000772299
-0.00104106
-0.000257845
0.00150377
.
.
.
0.00163125
0.00278506
0.00150377
-0.000257845
-0.00104106
-0.000772299
-3.09453e-005
FIR Compiler User Guide

4–2 Chapter 4: Functional Description
FIR Compiler
■ Band Reject

■ Raised Cosine

■ Root Raised Cosine

■ Half Band (low pass)

You can adjust the number of taps, cut-off frequencies, sample rate, filter type, and
window method to build a custom frequency response. Each time you apply the
settings, the FIR Compiler calculates the coefficient values and displays the frequency
response on a logarithmic scale. The coefficients are floating-point numbers and must
be scaled.

The values are displayed in the Coefficients scroll-box, of the Coefficients Generator
Dialog box, refer to Figure 3–2 on page 3–3.

When the FIR Compiler reads in the coefficients, it automatically detects any
symmetry. The filter gives you several scaling options, for example, scaling to a
specified number of bits or scaling by a user-specified factor.

The scaled coefficients are displayed in the Time Response & Coefficient Values tab
of the Parameterize FIR Compiler page, refer to Figure 3–5 on page 3–6.

Coefficient Scaling
Coefficient values are often represented as floating-point numbers. To convert these
numbers to a fixed-point system, the coefficients must be multiplied by a scaling
factor and rounded. The FIR Compiler provides five scaling options:

■ Auto scale to a specified number of precision bits—Because the coefficients are
represented by a certain number of bits, it is possible to apply whatever gain factor
is required such that the maximum coefficient value equals the maximum possible
value for a given number of bits. This approach produces coefficient values with
the maximum signal-to-noise ratio.

■ Auto with a power of 2—With this approach, the FIR Compiler selects the largest
power of two scaling factor that can represent the largest number within a
particular number of bits of resolution. Multiplying all of the coefficients by a
particular gain factor is the same as adding a gain factor before the FIR filter. In
this case, applying a power of two scaling factor makes it relatively easy to remove
the gain factor by shifting a binary decimal point.

■ Manual—The FIR Compiler lets you manually scale the coefficient values by a
specified gain factor.

■ Signed binary fractional—You can specify how many digits to use on either side of
the decimal point (supported in the variable architecture only).

■ None—The FIR Compiler can read in pre-scaled integer values for the coefficients
and not apply scaling factors.
FIR Compiler User Guide © December 2010 Altera Corporation

Chapter 4: Functional Description 4–3
FIR Compiler
Symmetrical Architecture Selection
Many FIR filters have symmetrical coefficient values. The FIR Compiler examines the
coefficients and automatically determines the filter’s symmetry: even, odd, or none.
After detecting symmetry, the wizard selects an optimum algorithm to minimize the
amount of computation needed. The FIR compiler determines coefficient symmetry
after the coefficients are rounded. If symmetry is present, two data points are added
prior to the multiplication step, saving a multiplication operation (taking advantage
of filter symmetry reduces the number of multipliers by about half).

1 The wizard gives you the option to force non-symmetrical structures. If the
symmetry-optimized architecture is not available, this option is disabled.

Odd and even filter structures are shown in Figure 4–1 and Figure 4–2.

Symmetrical Serial
Symmetrical serial filters take an additional clock cycle to perform the FIR
computation (so the filter can compute the carry). Additional logic cells are required
for the symmetrical adder resources.

Because non-symmetrical serial FIR filters do not require this resource, non-
symmetrical filters may be smaller and/or faster.

You can use the Resource Estimator in the Architecture Specification area of the
Parameterize FIR Compiler page to determine the best solution available. Refer to
Figure 3–9 on page 3–15).

Figure 4–1. Seven-Tap Symmetrical FIR Filter

Data In

Data Out

Z -1

C0

Z -1

C1 C2 C3

Z -1

Z -1

Z -1

Z -1

Z -1
© December 2010 Altera Corporation FIR Compiler User Guide

4–4 Chapter 4: Functional Description
FIR Compiler
Coefficient Reloading and Reordering
All of the FIR Compiler structures allow multiple coefficient sets, and the filter can
switch between coefficient sets dynamically. Additionally, while the filter uses one
coefficient set, you can update other sets. Therefore, your filter can switch between an
infinite number of coefficient sets.

To maximize silicon efficiency, coefficients are not stored in their natural order.
Reordering is performed automatically during the initial design. However, if the filter
coefficients are reloadable, any new coefficient set that you want to reload during the
filter operation must be reordered before the reload. A C++ program that can be used
to reorder coefficients is provided. A precompiled executable for Windows is also
provided.

The program can be found in <install path>\fir_compiler\misc. The C++ source code
file is named coef_seq.cpp and the executable program (for the Windows operating
system) is coef_seq.exe. You can add the source code to your coefficient generation
program, or use the executable file to re-order the coefficients.

The command to use coef_seq.exe is:

coef_seq.exe <path>/input.txt <path>/output.txt <FIR structure>
<coefficient store> <allow or disallow symmetry> <number of calculations for MCV|
coefficient bit width for others> <number of coefficient sets> <filter rate> <filter factor>
<coefficient bit width>

1 You should include the directory path with the input and output coefficient
file names, as indicated above.

Figure 4–2. Six-Tap Symmetrical FIR Filter

Data In

Data Out

Z -1

C0

Z -1

C1 C2

Z -1

Z -1

Z -1 Z -1
FIR Compiler User Guide © December 2010 Altera Corporation

Chapter 4: Functional Description 4–5
FIR Compiler
where:

■ <FIR structure> is:

■ MCV—multicycle variable

■ SER—fully serial

■ MBS—multibit serial

■ PAR—fully parallel

■ <coefficient store> is:

■ LC—logic cells

■ M512—M512 and MLAB blocks

■ M4K—M4K and M9K blocks

■ AUTO—Automatic memory block selection

■ <allow or disallow symmetry> is:

■ MSYM—Take advantage of symmetric coefficients

■ NOSYM—Use nonsymmetric coefficients

■ <number of calculations for MCV|coefficient bit width for others> is:

■ for multicycle variable filters, the number of clock cycles to calculate the result

■ for all other filters, use the coefficient bit width

■ <number of coefficient sets> is the user-specified number of coefficient sets

■ <filter rate> is be specified as one of the following (SGL, INT, DEC)

■ SGL—Single Rate FIR Filter

■ INT—Interpolating FIR Filter

■ DEC—Decimating FIR Filter

■ <filter factor> is an integer value representing the rate-changing factor.

■ For single-rate filters, this argument should be set to 1

■ For multirate FIR filters, this argument should be an integer between 1 and 16

■ <coefficient bit width> is the integer value representing the user-specified coefficient
bit width, which ranges from 2-32

For example:

coef_seq.exe D:/FIR/coef_log.txt D:/FIR/coef_in.txt MCV M4K MSYM 4 1 SGL 1 8

1 The program checks for symmetry automatically, but you can force it to disallow
symmetry. Your specification should be consistent with the setting in the FIR
Compiler wizard.

The reloading capability allows you to change coefficient values. These filters may
contain optimizations for symmetrical filters. If you want a filter that may need both
symmetrical and non-symmetrical filters, turn on Force Non-Symmetrical Structures
in the Architecture Specification section of the Parameterize FIR Compiler page.
© December 2010 Altera Corporation FIR Compiler User Guide

4–6 Chapter 4: Functional Description
FIR Compiler
If you select multiple-set coefficients, the filter can update one coefficient set while
another set is being used for a calculation.

Structure Types
The FIR Compiler wizard generates multicycle variable, parallel, serial, multibit
serial, and multichannel structures. All of these structures support coefficient
reloading.

For information about reordering the coefficients before reloading them, refer to
“Coefficient Reloading and Reordering” on page 4–4.

Multicycle Variable Structures
Multicycle variable (MCV) filters are optimized for high throughput. In a multicycle
variable structure, the designer specifies that the filter uses 1 to 1,024 clock cycles to
compute a result (for any filter that fits into a single device).

For Stratix, Stratix II, Stratix III, or Stratix IV devices, if you select the multicycle
variable structure, selecting DSP Blocks in the Multiplier list box allows the FIR
Compiler to use embedded DSP blocks for multipliers. This implementation results in
a smaller and faster design.

Parallel Structures
A parallel structure calculates the filter output in a single clock cycle. Parallel filters
provide the highest performance and consume the largest area. Pipelining a parallel
filter allows you to generate filters that run between 120 and 300 MHz at the cost of
pipeline latency.

Figure 4–3 shows the parallel filter block diagram.

Figure 4–3. Parallel Filter Block Diagram

yout

Array Multiplier Array Multiplier

xin xoutD Q D Q D QD QD QD Q
FIR Compiler User Guide © December 2010 Altera Corporation

Chapter 4: Functional Description 4–7
FIR Compiler
Serial Structures
A serial structure trades off area for speed. The filter processes input data one bit at-a-
time per clock cycle. Therefore, serial structures require N clock cycles (where N is the
input data width) to calculate an output. In the Stratix IV, Stratix III, Stratix II, Stratix,
Cyclone III, Cyclone II, and Cyclone device families, using memory blocks for data
storage will result in a significant reduction in area.

Figure 4–4 shows the serial filter block diagram.

Multibit Serial Structure
A multibit serial structure combines several small serial FIR filters in parallel to
generate the FIR result. This structure provides greater throughput than a standard
serial structure while using less area than a fully parallel structure, allowing you to
trade off device area for speed.

Figure 4–5 shows the multibit serial structure.

Figure 4–4. Serial Filter Block Diagram

yout

Bit Array Multiplier Bit Array Multiplier

xin

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

Serial
Accumulator

Figure 4–5. Multibit Serial Structure

Serial
FIR

Filter

Serial
FIR

Filter

Serial
FIR

Filter

Input
Data

Filtered
Data

FIR Compiler
Created Glue

Logic
© December 2010 Altera Corporation FIR Compiler User Guide

4–8 Chapter 4: Functional Description
FIR Compiler
Figure 4–6 shows the area/speed “trade-off” of fixed FIR filters.

Two serial filters operating in parallel compute the result at twice the rate of a single
serial filter. Three serial filters operate at triple the speed; four operate at four times
the speed. For example, a 16-bit serial FIR filter requires 16 clock cycles to complete a
single FIR calculation. A multibit serial FIR filter with two serial structures takes only
eight clock cycles to compute the result. Using four serial structures, only four clock
cycles are required to perform the computation. Three serial structures cannot be used
for a 16-bit serial structure, however, because 16 does not divide evenly by three.

Multichannel Structures
When designing DSP systems, you may need to generate two FIR filters that have the
same coefficients. If high speed is not required, your design can share one filter, which
uses fewer resources than two individual filters. For example, a two-channel parallel
filter requires two clock cycles to calculate two outputs. The resulting hardware
would need to run at twice the data rate of an individual filter.

1 To minimize the number of logic elements, use a distributed serial arithmetic
architecture, multiple channels, and memory blocks for data and coefficient storage.

Interpolation and Decimation
You can use the FIR Compiler to interpolate or decimate a signal. Interpolation
generates extra points in between the original samples; decimation removes
redundant data points. Both operations change the effective sample rate of a signal.

1 The outputs from interpolating and decimating filters that have the same input data
are likely to be different. This difference is because changing the delay between the
reset signal and the first non-zero input data sample may make the input sample go
down a different path of the polyphase filter. This means that the input data is
multiplied by a different set of coefficients and the filter results are different.

Figure 4–6. Fixed FIR Filters: Area Vs. Throughput

Multi-Bit
Serial

Throughput

Area

Serial

Parallel

With Extended
Pipelining

With Extended
Pipelining

With Extended
Pipelining
FIR Compiler User Guide © December 2010 Altera Corporation

Chapter 4: Functional Description 4–9
FIR Compiler
Mathematically, when a signal is interpolated, zeros are inserted between data points
and the data is then filtered to remove spectral components that were not present in
the original signal (Figure 4–7).

To decimate a signal, a low-pass filter is applied, which removes spectral components
that will not be present at the low sample rate. After filtering, appropriate sample
values are taken (Figure 4–8).

The FIR Compiler generates interpolation and decimation filters by combining high-
and low-level optimization techniques.

Using the high-level optimization technique, the FIR Compiler processes the data
from a polyphase decomposed filter. The polyphase decomposition breaks a single
filter into several smaller filters, which results in the following:

■ When using an interpolation filter, zero-stuffed data does not need to be
computed; potentially saving resources (Figure 4–9 on page 4–10).

■ When using a decimation filter, output data—which is discarded during
downsampling—is never computed, again potentially saving resources
(Figure 4–10 on page 4–11).

Using the low-level optimization technique, the polyphase decomposed filter is
implemented using a multichannel, multiple coefficient set structure with an
appropriate wrapper.

Figure 4–7. Signal Interpolation

Figure 4–8. Signal Decimation

N

Input
Data

After
Zero
Stuffing

After
Low-Pass
Filtering

LPF
Input Output

M

Input
Data

Filtered
Data

Decimated
Data

LPF
Input Output
© December 2010 Altera Corporation FIR Compiler User Guide

4–10 Chapter 4: Functional Description
FIR Compiler
Because the FIR Compiler is an automated design tool, it is possible to implement a
multichannel, multiple coefficient set interpolation or decimation filter (which is
further implemented as a multichannel, multiple coefficient set structure).

The net result of these optimization techniques is a general savings in resources.

Implementation Details for Interpolation and Decimation Structures
Figure 4–9 and 4–14 illustrate the results when applying polyphase decomposition to
interpolation and decimation filters.

Figure 4–9 illustrates an interpolation structure. It takes a constant number of clocks
to compute each polyphase output. The input data must be held for the number of
clocks to compute each polyphase output multiplied by the number of polyphase
units (which is the same as the interpolation factor).

Figure 4–10 on page 4–11 shows a decimation filter (with polyphase decomposition).
Each polyphase filter must be computed prior to computing the final results. Because
there are several polyphase results that must be accumulated, it is clear that the
output will update every N clocks, where N = number of polyphase filters × number
of clocks to compute each polyphase result.

1 The number of polyphase filters is equal to the decimation factor. The input data must
be held for the time it takes to compute a single polyphase filter.

Figure 4–9. Interpolation Filter Structure

P(0)

P(1)

P(2)

P(N-1)

input output

input
LPF

output
N

input
N Channel
N Coefficient Set
Single Rate FIR Filter

Control
Circuitry

output
FIR Compiler User Guide © December 2010 Altera Corporation

Chapter 4: Functional Description 4–11
FIR Compiler
Availability of Interpolation and Decimation Filters
Interpolation and decimation filters are available for all architectures:

■ Parallel distributed arithmetic

■ Serial distributed arithmetic

■ Multibit serial distributed arithmetic

■ Multicycle variable structures

All architecture configuration options are available for interpolation and decimation
filters, including:

■ User configuration of data storage type (memory or logic cells)

■ User configuration of coefficient storage type (memory or logic cells)

■ Multichannel capability

■ Multiple coefficient set capability

Family-Specific Features

Stratix IV, Stratix III and Stratix II filters implement ternary adder structures in all
architectures:

■ Fully parallel distributed arithmetic

■ Fully serial distributed arithmetic

■ Multibit serial distributed arithmetic

■ Multicycle variable

Figure 4–10. Decimation Filter Structure

P(0)

P(1)

P(2)

P(N-1)

output
input

input
N Channel
N Coefficient Set
Single Rate FIR Filter

Control
Circuitry

Accumulator

input
LPF

output
N

output
© December 2010 Altera Corporation FIR Compiler User Guide

4–12 Chapter 4: Functional Description
FIR Compiler
All multicycle variable structures allow the use of hard multipliers in Stratix IV,
Stratix III, Stratix II, Stratix, Cyclone III, and Cyclone II structures. In addition,
Stratix IV, Stratix III, Stratix II, and Stratix multicycle variable implementations take
advantage of the built-in adder structures in the DSP block.

1 Stratix series devices allow the most flexibility for data and coefficient storage. You
can choose between M512, M4K, and MRAM (when appropriate) for Stratix and
Stratix II devices. Stratix III and Stratix IV devices support MLAB, M9K, and M144K.

Half-Band Decimation Filters
A decimation half-band optimized architecture is available for multicycle variable
structures. This architecture uses half the number of multipliers compared to the
decimation-symmetric architecture when a half-band coefficient set is selected. A
halfband coefficient set has an odd number of symmetric coefficients and every other
coefficient value is 0.

Currently only a single fixed-coefficient set is supported with this optimized
architecture. The data storage and coefficient storage should be set to either Auto or
one of the available block memories. Any value for the decimation factor and the
number of channels can be selected. The number of clocks to compute should be
greater than 1. The FIR Compiler automatically picks the decimation half-band
optimized architecture when these conditions are met.

Symmetric-Interpolation Filters
A new symmetric-interpolation optimized architecture is available for multicycle
variable structures. This architecture requires half the number of multipliers
compared to the standard interpolation filter when a symmetric coefficient set is
selected.

The number of filter taps should be an odd value. Currently only a single fixed-
coefficient set is supported with the optimized architecture. The data storage and
coefficient storage should be set to either Auto or one of the available block
memories. Any value for interpolation factor and number of channels can be selected.
The number of clocks to compute should be greater than 1. The FIR compiler
automatically picks the optimized architecture when these conditions are met.

Pipelining
Pipelining is most effective for producing high-performance filters at the cost of
increased latency: the more pipeline stages you add, the faster the filter becomes.

1 Pipelining breaks long carry chains into shorter lengths. Therefore, if the carry chains
in your design are already short, adding pipelining may not speed your design.

The FIR Compiler lets you select whether to add one, two, or three pipeline levels.
FIR Compiler User Guide © December 2010 Altera Corporation

Chapter 4: Functional Description 4–13
Simulation Output
Simulation Output
The FIR Compiler generates a number of output files for design simulation. After you
have created a custom FIR filter, you can use the output files with MATLAB or VHDL
simulation tools. You can use the test vectors and MATLAB software to simulate your
design.

1 IP functional simulation models will output correct data only when data storage is
clear. When data storage is not clear, functional simulation models will output non-
relevant data. The number of clock cycles it takes before relevant samples are
available is N; where N = (number of channels) × (number of coefficients) × (number
of clock cycles to calculate an output).

For a full list of files generated by the FIR Compiler, refer to Table 2–1 on page 2–6 .

Avalon Streaming Interface
The Avalon® Streaming (Avalon-ST) interface defines a standard, flexible, and
modular protocol for data transfers from a source interface to a sink interface and
simplifies the process of controlling the flow of data in a datapath.

Avalon-ST interface signals can describe traditional streaming interfaces supporting a
single stream of data without knowledge of channels or packet boundaries.

Such interfaces typically contain data, ready, and valid signals. The Avalon-ST
interface can also support more complex protocols for burst and packet transfers with
packets interleaved across multiple channels.

The Avalon-ST interface inherently synchronizes multi-channel designs, which allows
you to achieve efficient, time-multiplexed implementations without having to
implement complex control logic.

The Avalon-ST interface supports backpressure, which is a flow control mechanism
where a sink can signal to a source to stop sending data. The sink typically uses
backpressure to stop the flow of data when its FIFO buffers are full or when there is
congestion on its output.

When designing a datapath which includes the FIR Compiler MegaCore function, you
may not need backpressure if you know the downstream components can always
receive data. You may achieve a higher clock rate by driving the ast_source_ready
signal of the FIR Compiler high, and not connecting the ast_sink_ready signal.

1 The coefficient reload related ports and coefficient set selection ports in multi-set
filters are not Avalon Streaming compliant.

The Avalon Interface Specifications define parameters which can be used to specify any
type of Avalon-ST interface. Table 4–1 on page 4–14 lists the values of these
parameters that are defined for the Avalon-ST interfaces used by the FIR Compiler.
All parameters not explicitly listed in the table have undefined values.
© December 2010 Altera Corporation FIR Compiler User Guide

4–14 Chapter 4: Functional Description
Avalon Streaming Interface
The Avalon Interface Specifications define many signal types many of which are
optional. Table 4–2 lists the signal types used by the Avalon-ST interfaces for the FIR
Compiler MegaCore function. Any signal type not explicitly listed in the table is not
included.

f For a full description of the Avalon-ST interface protocol, refer to the Avalon Interface
Specifications.

Avalon-ST Data Transfer Timing
Figure 4–11 shows the Avalon-ST interface signals.

Table 4–1. Avalon-ST Interface Parameters

Parameter Name Value

READY_LATENCY 0

BITS_PER_SYMBOL data width

SYMBOLS_PER_BEAT 1

SYMBOL_TYPE signed/unsigned

ERROR_DESCRIPTION 00: No error

01: Missing startofpacket (SOP)

10: Missing endofpacket (EOP)

11: Unexpected EOP or any other error

Table 4–2. Avalon-ST Interface Signal Types

Signal Type Width Direction

ready 1 Sink to Source

valid 1 Source to Sink

data data width Source to Sink

channel log2(number of channels) Source to Sink

error 2 Source to Sink

startofpacket 1 Source to Sink

endofpacket 1 Source to Sink

Figure 4–11. Avalon-ST Interface

Data Source Data Sink

valid

data

error

ready

channel

startofpacket

endofpacket
FIR Compiler User Guide © December 2010 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 4: Functional Description 4–15
Avalon Streaming Interface
The sink indicates to the source that it is ready for an active cycle by asserting the
ready signal for a single clock cycle. Cycles during which the sink is ready for data
are called ready cycles. During a ready cycle, the source may assert valid and provide
data to the sink. If it has no data to send, it deasserts valid and can drive data to any
value.

When READY_LATENCY=0, data is transferred only when ready and valid are
asserted on the same cycle. In this mode of operation, the source data does not need to
receive the sink’s ready signal before it begins sending valid data. The source
provides the data and asserts valid whenever it can and waits for the sink to capture
the data and assert ready. The sink only captures input data from the source when
ready and valid are both asserted.

Figure 4–12 illustrates the data transfer timing.

The source provides data and asserts valid on cycle 1, even though the sink is not
ready. The source waits until cycle 2, when the sink does assert ready, before moving
onto the next data cycle. In cycle 3, the source drives data on the same cycle and
because the sink is ready to receive it, the transfer occurs immediately. In cycle 4, the
sink asserts ready, but the source does not drive valid data.

Packet Data Transfers
A beat is defined as the transfer of one unit of data between a source and sink
interface. This unit of data may consist of one or more symbols and makes it is
possible to support modules that convey more than one piece of information about
each valid cycle. Packet data transfers are used for multichannel transfers. Two
additional signals (startofpacket and endofpacket) are defined to implement
the packet transfer.

Figure 4–13 shows an example where the channel signal shows to which channel the
data sample belongs.

1 The channel input signal is not used in the FIR Compiler interface.

Figure 4–12. Avalon-ST Interface Timing with READY_LATENCY=0

Do D1 D2

0 1 2 3 5 6 7 84

clk

ready

valid

error

data

00 00 00 00

D2

Figure 4–13. Packet Data Transfer

0 1 2 3

00 00 00 00

D0 D1 D2 D3

1 2 3 4 5 6 7

clk
ready
valid

startofpacket
endofpacket
channel[1:0]

data
error[1:0]
© December 2010 Altera Corporation FIR Compiler User Guide

4–16 Chapter 4: Functional Description
Signals
The data transfer in Figure 4–13 occurs on cycles 1, 2, 4, and five, when both ready
and valid are asserted. During cycle 1, startofpacket is asserted, and the first
data is transferred. During cycle 5, endofpacket is asserted indicating that this is the
end of the packet.

The channel signal indicates the channel index associated with the data. For
example, on cycle 1, the data D0 associated with channel 0 is available.

The error signal stays at value 00 during a normal operation. Whenever a value
other than 00 is received from the data source (as in Figure 4–11), or a packet error is
detected by the Avalon-ST controller of the FIR filter, the controller is reset and waits
for the next valid startofpacket signal. It also transmits the received error signal
from its data source module error output.

1 The error signal only resets the Avalon-ST controller and not the design. Therefore,
the output data produced after an error condition may contain invalid data for several
cycles. It is recommended that a global reset is applied whenever an error message is
present in the system.

Signals
Table 4–3 lists the input and output signals for the FIR Compiler MegaCore function.

Table 4–3. FIR Compiler Signals (Part 1 of 2)

Signal Direction Description

clk Input Clock signal used to clock all internal FIR filter registers.

enable Input Active high clock enable signal. This pin appears when the Add global clock
enable pin option is selected on the Parameterize FIR Compiler page. (The
Avalon-ST registers are NOT connected to this clock enable.)

reset_n Input Synchronous active low reset signal. Resets the FIR filter control circuit on the
rising edge of clk. This signal should last longer than one clock cycle.

ast_sink_ready Output Asserted by the FIR filter when it is able to accept data in the current clock cycle.

ast_sink_valid Input Asserted when input data is valid. When ast_sink_valid is not asserted, the
FIR processing is stopped if new data is required and no data is left in the Avalon-
ST input FIFO. Otherwise, the FIR processing continues.

ast_sink_data Input Sample input data.

ast_sink_sop Input Marks the start of the incoming sample group. The start of packet (SOP) is
interpreted as a sample from channel 0.

ast_sink_eop Input Marks the end of the incoming sample group. If there is data associated with N
channels, the end of packet (EOP) must be high when the sample belonging to the
last channel (that is, channel N-1), is presented at the data input.

ast_sink_error Input Error signal indicating Avalon-ST protocol violations on the sink side:

■ 00: No error

■ 01: Missing SOP

■ 10: Missing EOP

■ 11: Unexpected EOP

Other types of errors are also marked as 11.

ast_source_ready Input Asserted by the downstream module if it is able to accept data.

ast_source_valid Output Asserted by the FIR filter when there is valid data to output.
FIR Compiler User Guide © December 2010 Altera Corporation

Chapter 4: Functional Description 4–17
Timing Diagrams
Timing Diagrams
The reset_n signal resets the control logic and state machines that control the FIR
Compiler (not including data storage elements that hold previous inputs used to
calculate the result).

The previous data is not cleared when the reset_n signal is applied. To clear the
data, set the ast_sink_data port to 0 for n clock cycles, where n = (number of
coefficients) × (number of input channels) × (number of clock cycles needed to compute a FIR
result).

The FIR output value depends on the coefficient values in the design. Therefore, the
timing diagrams of your own design may be different than those shown in the
following figures. However, you can use the testbench generated by the FIR compiler
to get the correct timing relation between signals for a specific parameterized case.

All timing diagrams assume a full streaming operation where ast_source_ready
and ast_sink_ready are always 1 (unless otherwise stated).

ast_source_channel Output Indicates the index of the channel whose result is presented at the data output.
The width of this signal = log2(number of channels).

ast_source_data Output Filter output. The data width depends on the parameter settings.

ast_source_sop Output Marks the start of the outgoing FIR filter result group. If '1', a result
corresponding to channel 0 is output.

ast_source_eop Output Marks the end of the outgoing FIR filter result group. If '1', a result corresponding
to channel N-1 is output, where N is the number of channels.

ast_source_error Output Error signal indicating Avalon-ST protocol violations on the source side:

■ 00: No error

■ 01: Missing SOP

■ 10: Missing EOP

■ 11: Unexpected EOP

Other types of errors are also marked as 11.

coef_set Input Selects which coefficient set the FIR filter uses for the calculation. (Appears when
multiple coefficient sets are used.) The width of this signal = log2(number of
coefficient sets).

coef_in_clk Input Clock to reload coefficients when coefficients are stored in memory. (Appears
when the Coefficient Reload option is selected and the Use Single Clock option is
not selected) This clock can be different than clk.

coef_set_in Input Selects which coefficient set to be reloaded. (Appears when multiple coefficient
sets are used and the Coefficient Reload option is selected.) The width of this
signal = log2(number of coefficient sets)

coef_in Input Input coefficient value when reloading coefficient. (Appears when the Coefficient
Reload option is selected)

coef_we Input Active high write enable signal. Enables coefficient overwriting when coefficients
are reloadable.

coef_ld Output Coefficient reload control port. This port is created only when multicycle filters are
selected and the coefficient storage is logic cells.

Table 4–3. FIR Compiler Signals (Part 2 of 2)
© December 2010 Altera Corporation FIR Compiler User Guide

4–18 Chapter 4: Functional Description
Timing Diagrams
Reset and Global Clock Enable Operations
Figure 4–14 shows the reset and clock enable operations.

When the reset (reset_n) is applied to the filter, the ast_sink_ready and
ast_source_valid signals go low. At the next rising edge of the clock (clk) after
the reset is released, ast_sink_ready goes high indicating that the design is ready
to accept new data. This behavior is independent of the filter type and architecture
because there is a small FIFO in the Avalon-ST controller.

The global clock enable signal (where it exists) can also control when the FIR
MegaCore function is stalled. The Avalon-ST controller operates independent of the
global clock enable. The FIR is stalled as soon as the global clock enable goes low.
However, because of the internal buffering in the Avalon-ST controller, the
ast_sink_ready signal can go low in the following cycles. For the same reason,
when the global enable is high, ast_sink_ready may go high at a later cycle.

The ast_source_valid signal is produced by the Avalon-ST controller is therefore
independent of the global clock enable. When the available valid data is transferred,
and no more output data is available, it goes low until there is valid data to transfer.

Single Rate Filter Timing Diagram
Figure 4–15 shows the timing diagram of a single channel single rate FIR filter
implemented either in MCV architecture with a Clocks to Compute value of 1, or in
Parallel architecture.

Figure 4–14. Reset and Clock Enable Protocol

Figure 4–15. Single Channel, Single Rate (Parallel or MCV Single Cycle)
FIR Compiler User Guide © December 2010 Altera Corporation

Chapter 4: Functional Description 4–19
Timing Diagrams
This filter accepts an input every clock cycle and produces an output every clock
cycle. Because ast_source_ready and ast_sink_valid are kept at high, the
filter can internally run fully streaming. An input is transferred when
ast_sink_ready and ast_sink_valid are both high during the rising edge of the
clock.

Figure 4–16 shows a three channel filter with the same specification as the single
channel filter in Figure 4–15.

The FIR filter now has start of packet (sop) and end of packet (eop) signals for both
the sink (input) and source (output) modules. The first input data to the FIR filter is
accompanied by the high value of the ast_sink_sop port, which means it belongs
to the first channel.

The third input data is marked as an end of packet by the high value of the
ast_sink_eop port. This sequence repeats itself continuously at each cycle.

When the filter output is ready, ast_source_valid goes high, and for the first data
output ast_source_sop goes high to mark the start of the packet. The
ast_source_channel output shows to which channel that particular output
belongs. The last channel data is marked with the high value of the
ast_source_eop port.

Figure 4–17 and Figure 4–18 on page 4–20 demonstrate another single channel, single
rate filter timing diagram. In these diagrams, the FIR filter requires input data every
three clock cycles and produces one output data every three clock cycles. In general,
MCV multicycle filters (when the Clocks to Compute value is greater than one),
Multibit Serial filters, and Serial filters require a new input data every N clock cycles
where N represents the following:

■ For an MCV multicycle filter, N is the clocks to compute value

■ For a Multibit Serial filter, N = (input data bit width)/(number of serial units)

■ For a Serial filter, N = (input data bit width +1)

Figure 4–16. Three Channel, Single Rate (Parallel or MCV Single Cycle)
© December 2010 Altera Corporation FIR Compiler User Guide

4–20 Chapter 4: Functional Description
Timing Diagrams
In Figure 4–17, the flow is controlled by the data provider asserting
ast_sink_valid every three clock cycles.

In Figure 4–18, ast_sink_valid is always held high and the data provider can feed
new data in every clock cycle, but the filter accepts new data every three clock cycles
by asserting ast_sink_ready.

In this scenario, a number of data samples are fetched at once and then
ast_sink_ready is de-asserted for a longer period. This behavior is due to the
internal buffering of the Avalon-ST controller.

Interpolation Filter Timing Diagrams
Figure 4–19 and Figure 4–20 on page 4–21 show a single channel interpolation-by-2
filter with a parallel architecture.

Figure 4–17. Single Channel, Single Rate (Serial, Multibit Serial, MCV Multicycle), ast_sink_valid Control

Figure 4–18. Single Channel, Single Rate (Serial, Multibit Serial, MCV Multicycle) ast_sink_ready Control

Figure 4–19. Single Channel, Interpolation-by-2 (Parallel, MCV Single Cycle), ast_sink_valid Control
FIR Compiler User Guide © December 2010 Altera Corporation

Chapter 4: Functional Description 4–21
Timing Diagrams
These timing diagrams also apply to an MCV single cycle filter. An interpolation-by-2
filter produces two output data for each input data it receives. As seen from the
figures, a new output is produced every cycle. This means that new input data is
required every other cycle.

This behavior can be observed easily when the flow of data is controlled by the
ast_sink_valid signal as in Figure 4–19.

Figure 4–21 shows the timing diagram for a three channel, interpolation-by-2 filter
with a Parallel or MCV single cycle architecture illustrating the additional start of
packet and end of packet signals.

The timing diagrams for Serial, Multibit serial, and MCV multicycle filters would be
similar to Figure 4–17 and Figure 4–18. For an MCV filter with a Clocks to Compute
value of N, and interpolation factor M, new input data is required every N×M clock
cycles and a new output would be produced every M clock cycles.

Decimation Filter Timing Diagrams
In a decimation-by-M filter, for every M input data, one output will be produced.
Figure 4–22 on page 4–22 shows that for a Parallel or MCV (single cycle) decimation-
by-2 filter, new input data is taken each clock cycle and new output data is produced
every other clock cycle.

Figure 4–20. Single Channel, Interpolation-by-2 (Parallel, MCV Single Cycle), ast_sink_ready Control

Figure 4–21. Three Channel, Interpolation-by-2 (Parallel, MCV Single Cycle)
© December 2010 Altera Corporation FIR Compiler User Guide

4–22 Chapter 4: Functional Description
Timing Diagrams
If the filter is time-shared by N, (that is the Clocks to compute value is N), then new
input data is required every N clock cycles and new output data is produced every
N×M cycles.

Figure 4–23 shows the timing diagram for a Multibit serial filter with two serial units
and an input data width of 8-bits.

The filter needs new data every four clock cycles and produces an output every 8
clock cycles. Because the flow is controlled by ast_sink_ready, the input data
fetching occurs in a groups, where ast_sink_ready goes high for five cycles and
five new data inputs are taken at once. Then ast_sink_ready goes low and no data
is accepted for 15 cycles. The ast_source_sop and ast_source_eop signals mark
the start of packet and end of packet respectively.

Coefficient Reloading Timing Diagrams
The coefficient reload ports are not Avalon-ST compliant and work independently of
the enable and reset signals, and of the Avalon-ST controller. You can load new
coefficients even if the filter is under reset conditions or not enabled.

Serial, multibit serial, and parallel FIR filters use a distributed arithmetic algorithm
and the coefficients stored in memory blocks are precalculated. When updating the
coefficients, the new coefficients first go through a pre-calculating algorithm. The first
data to reload in each memory block is always zero. The rising edge of the coef_we
signal resets the internal data address counter for reloading.

Figure 4–22. Single Channel, Decimation-by-2 (Parallel, MCV Single Cycle)

Figure 4–23. Three Channel, Decimation Filter (Serial, MBS, MCV Multicycle)
FIR Compiler User Guide © December 2010 Altera Corporation

Chapter 4: Functional Description 4–23
Timing Diagrams
For information about how to pre-calculate coefficients, refer to “Coefficient
Reloading and Reordering” on page 4–4.

In serial and multibit serial filters, coef_we is effective two clock cycles ahead of the
first coef_in data and lasts until the last coef_in data is transmitted. In parallel
filters, coef_we only needs to be effective one clock cycle ahead of the first coef_in
data. To reload another set of coefficients, coef_we must be low for at least one clock
cycle. The reload clock does not have to be the same clock as the one used by the FIR
calculation.

Figure 4–24 shows the serial and multibit serial coefficient reloading timing diagram.

Figure 4–25 shows the parallel coefficient reloading timing diagram.

1 Serial, multibit serial, and parallel FIR architectures use a distributed arithmetic
algorithm. In the algorithm, look-up tables store partial products of the coefficient; the
first data of the partial product is always 0. When reloading pre-calculated coefficients
in serial, multibit serial, and parallel architectures, the first reloading coefficient is
always 0.

For information about how to pre-calculate coefficients, refer to “Coefficient
Reloading and Reordering” on page 4–4.

Figure 4–24. Serial and Multibit Serial Coefficient Reloading Timing Diagram

clk

reset_n

ast_sink_ready

ast_sink_data

coef_in_clk

coef_we

coef_in

coef_set

coef_set_in

ast_source_valid

ast_source_data

0 1 -1 0-1

0 0 7 5 12 0

00

coef_we should be two clock cycles ahead of coef_in (First data is always 0)

Clock to reload coefficients Precalculated coefficient values

Figure 4–25. Parallel Coefficient Reloading Timing Diagram

clk

reset_n

ast_sink_data

coef_in_clk

coef_we

coef_in

coef_set

coef_set_in

0

0 0 7 5 12 0 7

coef_we should be one clock cycle ahead of coef_in (First data is always 0)
© December 2010 Altera Corporation FIR Compiler User Guide

4–24 Chapter 4: Functional Description
Timing Diagrams
Multicycle variable reloading is faster than the fixed FIR (with reloading capability).
Coefficients need sequence adjustment using the same algorithm as fixed FIR filters
for all types of coefficient storage. The reloading clock is the same as the FIR filter
calculation clock; coef_we should be triggered by the coef_ld signal.

1 When the coefficients are stored in logic cells, a reloaded coefficient set reverts backs
to the original set after a reset operation.

Figure 4–26 shows the Multicycle variable coefficient reloading timing diagram when
the coefficients are stored in logic cells.

For multicycle variable FIR filters, when coefficients are stored in memory blocks,
coef_we should be effective two clock cycles before the first coef_in data, and
should last until the last coef_in data is transmitted. Coefficients can be
transmitted from c0 to cn by a different clock.

Figure 4–27 shows the Multicycle variable coefficient reloading timing diagram when
the coefficients are stored in memory blocks.

If you use multiple coefficient sets, you can update one set of coefficients while using
another set for calculation. The signals coef_set_in and coef_we are not clocked
in and pipelined synchronously. While you update the coefficient set, you need to set
and hold the coef_set_in signal for several cycles before coef_we is asserted and
after it is de-asserted.

Figure 4–26. Multicycle Variable (Using Logic Cells) Coefficient Reloading Timing Diagram

clk

reset_n

coef_ld

coef_we

coef_in

ast_sink_ready

ast_sink_data

ast_source_valid

ast_source_data

0 -114 -12 -10 0 -16 -127 -16

0

0

Coef_we is valid one clock cycle after effective coef_ld

Input coefficients coef_in are sequence adjusted

Figure 4–27. Multicycle Variable (Using Memory Blocks) Coefficient Reloading Timing Diagram

clk

ast_sink_ready

ast_sink_data

coef_in_clk

coef_we

coef_in

ast_source_valid

ast_source_data

0

5 -114 -12 -10 0 -16 -127 -16 8-16

0

coef_we is effective two clock cycles before first coef_in data

Coefficients from c0 to cN
FIR Compiler User Guide © December 2010 Altera Corporation

Chapter 4: Functional Description 4–25
Timing Diagrams
The selection of the coefficient set for calculation is also not synchronous to the input
data because of the Avalon-ST flow controller. Once the coef_set signal is set to a
particular value, it immediately affects the operation of the filter. This means that
some of the input data already received by the Avalon-ST controller will be calculated
using the new coefficient set (Figure 4–28).

1 For DSP Builder users, a button is available that ties the coef_in_clk to the clk in
the wrapper. DSP Builder will not work with more than one clock domain per
MegaCore function.

When loading multiple coefficient sets, to identify the coefficient set being loaded, the
duration of the clock cycle for coef_set_in must be one clock cycle longer than the
duration of coef_we as shown in Figure 4–29.

These timing requirements affect all designs that load multiple coefficient sets. If the
specified timing requirements are not met when loading multiple coefficient sets, a
specific set of coefficients will not be identified.

Figure 4–28. Multiple Coefficient Set Selection Timing Diagram

clk

ast_sink_ready

ast_sink_data

coef_in_clk

coef_we

coef_in

coef_set

coef_set_in

ast_source_valid

ast_source_data

0 113 -69 26 73 -56-56

0

0 -791 82

This data is calculated
with coef_set1

Due to Avalon-ST buffering, this and some of the previous
data values can also be calculated with coef_set1.

Figure 4–29. Timing Requirements for Loading Multiple Coefficient Sets

clk

ast_sink_ready

ast_sink_data

coef_we

coef_in

coef_set

coef_set_in

ast_source_valid

ast_source_data

0 1 01

0 18 -2 -7 -1 0 0

0 18

coef_set_in must be sustained one clock cycle longer than coef_we
© December 2010 Altera Corporation FIR Compiler User Guide

4–26 Chapter 4: Functional Description
Referenced Documents
Referenced Documents
Altera application notes, white papers, and user guides providing more detailed
explanations of how to effectively design with MegaCore functions and the Quartus II
software are available at the Altera web site (www.altera.com).

In particular, refer to the following references:

■ MegaCore IP Library Release Notes and Errata.

■ AN320: OpenCore Plus Evaluation of Megafunctions.

■ Altera Software Installation and Licensing manual.

■ Avalon Interface Specifications.

■ DSP Builder User Guide.

■ Simulating Altera Designs chapter in volume 3 of the Quartus II Handbook.
FIR Compiler User Guide © December 2010 Altera Corporation

www.altera.com/literature/rn/rn_ip.pdf
http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/ug/ug_dsp_builder.pdf
http://www.altera.com
http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/ug/ug_dsp_builder.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

© December 2010 Altera Corporation
A. FIR Compiler Supported Device
Structures
Supported Device Structures
Table A–1 lists the device structures supported by the FIR Compiler.

The data storage depends on the specified user settings. Cyclone® devices do not
support M512 or MRAM memory. MLAB, M9K and M144K are supported by
Stratix® III and Stratix IV devices only.

Table A–1. Device Structures Supported by FIR Compiler (Part 1 of 2)

Structure
Sub

Structure
Input Bit

Width
Flow

Control
Data

Storage
Coefficient

Storage

Multiple
Coefficient

Sets
Symmetric
Coefficient

Serial Fixed
Coefficient

4 to 32 Avalon-ST
interface and
optional global
clock enable

Logic cell, M512,
M4K, M-RAM
MLAB, M9K,
M144K, Auto

Logic cell,
M512, M4K,
MLAB, M9K,
Auto

Yes Yes

Reloadable
Coefficient

4 to 32 Avalon-ST
interface and
optional global
clock enable

Logic cell, M512,
M4K, M-RAM
MLAB, M9K,
M144K, Auto

M512, M4K,
M512, M4K,
MLAB, M9K,
Auto

Yes Yes

Interpolation
(Reloadable
Coefficient must
be in memory)

4 to 32 Avalon-ST
interface and
optional global
clock enable

Logic cell, M512,
M4K, M-RAM
MLAB, M9K,
M144K, Auto

Logic cell,
M512, M4K,
MLAB, M9K,
Auto

Yes N/A

Decimation
(Reloadable
Coefficient must
be in memory)

4 to 32 Avalon-ST
interface and
optional global
clock enable

Logic cell, M512,
M4K, M-RAM
MLAB, M9K,
M144K, Auto

Logic cell,
M512, M4K,
MLAB, M9K,
Auto

Yes N/A

Multibit
Serial

Fixed
Coefficient

≥ 4
(number
of serial
units)

Avalon-ST
interface and
optional global
clock enable

Logic cell, M512,
M4K, M-RAM
MLAB, M9K,
M144K, Auto

Logic cell,
M512, M4K,
MLAB, M9K,
Auto

Yes Yes

Reloadable
Coefficient

≥ 4
(number
of serial
units)

Avalon-ST
interface and
optional global
clock enable

Logic cell, M512,
M4K, M-RAM
MLAB, M9K,
M144K, Auto

M512, M4K,
M512, M4K,
MLAB, M9K,
Auto

Yes Yes

Interpolation
(Reloadable
Coefficient must
be in memory)

≥ 4
(number
of serial
units)

Avalon-ST
interface and
optional global
clock enable

Logic cell, M512,
M4K, M-RAM
MLAB, M9K,
M144K, Auto

Logic cell,
M512, M4K,
MLAB, M9K,
Auto

Yes N/A

Decimation
(Reloadable
Coefficient must
be in memory)

≥ 4
(number
of serial
units)

Avalon-ST
interface and
optional global
clock enable

Logic cell, M512,
M4K, M-RAM
MLAB, M9K,
M144K, Auto

Logic cell,
M512, M4K,
MLAB, M9K,
Auto

Yes N/A
FIR Compiler User Guide

A–2 Appendix A: FIR Compiler Supported Device Structures
Supported Device Structures
Parallel Fixed
Coefficient

2 to 32 for
signed, 1
to 32 for
unsigned

Avalon-ST
interface and
optional global
clock enable

Logic cell, Auto Logic cell,
M512, M4K,
MLAB, M9K,
Auto

Yes Yes

Reloadable
Coefficient

2 to 32 for
signed, 1
to 32 for
unsigned

Avalon-ST
interface and
optional global
clock enable

Logic cell, Auto M512, M4K,
M512, M4K,
MLAB, M9K,
Auto

Yes Yes

Interpolation
(Reloadable
Coefficient must
be in memory)

4 to 32 Avalon-ST
interface and
optional global
clock enable

Logic cell, Auto Logic cell,
M512, M4K,
MLAB, M9K,
Auto

Yes N/A

Decimation
(Reloadable
Coefficient must
be in memory)

4 to 32 Avalon-ST
interface and
optional global
clock enable

Logic cell, Auto Logic cell,
M512, M4K,
MLAB, M9K,
Auto

Yes N/A

Multicycle
Variable

Clocks to
compute = 1

2 to 32 for
signed, 1
to 32 for
unsigned

Avalon-ST
interface and
optional global
clock enable

Logic cell, Auto Logic cell, if
(number of
coefficient
set) >1,
M512, M4K,
MLAB, M9K,
Auto

Yes Yes

Clocks to
compute = 2

2 to 32 for
signed, 1
to 32 for
unsigned

Avalon-ST
interface and
optional global
clock enable

Logic cell, Auto Logic cell,
M512, M4K,
MLAB, M9K,
Auto

Yes Yes

Clocks to
compute = 3

2 to 32 for
signed, 1
to 32 for
unsigned

Avalon-ST
interface and
optional global
clock enable

Logic cell, M512,
M4K, MLAB, M9K,
M144K, Auto

Logic cell,
M512, M4K,
MLAB, M9K,
Auto

Yes Yes

Interpolation:
Clocks per
output = 1

2 to 32 for
signed, 1
to 32 for
unsigned

Avalon-ST
interface and
optional global
clock enable

Logic cell, M512,
M4K, MLAB, M9K,
M144K, Auto

Logic cell,
M512, M4K,
MLAB, M9K,
Auto

Yes N/A

Decimation:
Clocks per
input = 1

2 to 32 for
signed, 1
to 32 for
unsigned

Avalon-ST
interface and
optional global
clock enable

Logic cell, M512,
M4K, MLAB, M9K,
M144K, Auto

Logic cell,
M512, M4K,
MLAB, M9K,
Auto

Yes Yes

Table A–1. Device Structures Supported by FIR Compiler (Part 2 of 2)

Structure
Sub

Structure
Input Bit

Width
Flow

Control
Data

Storage
Coefficient

Storage

Multiple
Coefficient

Sets
Symmetric
Coefficient
FIR Compiler User Guide © December 2010 Altera Corporation

Appendix A: FIR Compiler Supported Device Structures A–3
HardCopy II Support
HardCopy II Support
Preloaded RAM can be used by the other supported device families in tapped delay
line (for data storage) or for coefficient storage in reloadable FIR filters. However,
HardCopy® II devices do not support preloaded RAM elements.

Preloaded RAM is used by the other devices if you select M512 or M4K for data
storage (or if you select Auto, the Quartus® II software selects M512 or M4K) and the
memory is automatically preloaded with zeros. This cannot be done for HardCopy II
devices.

For HardCopy II devices, you need to flush the memory by preceding your real data
with n zeros when loading the data into memory, and then discard the corresponding
n outputs.

The formula for doing this is as follows:

n = number of channels × number of coefficients

Preloaded RAM may also be used by the other device families if you select M512 or
M4K for the coefficient storage of reloadable FIR filters. This RAM cannot be
preloaded in HardCopy II, and you must implement the logic to initialize or update
the coefficients. This can be done on-chip or by using the coefficient reordering
program (coef_esq.exe) included in the <install path>\fir_compiler\misc directory
and described in the section “Coefficient Reloading and Reordering” on page 4–4.

Compiling HardCopy II Designs
When you store your data in memory or you store your coefficients in memory and
reload them, you must delete the memory initialization files described below before
you can successfully compile a HardCopy II design in the Quartus II software.

If you are storing data in memory, to successfully compile your design in the Quartus
II software, you must first delete the following file from the project directory before
compiling your design:

<variation name>_zero.hex

If you store your coefficients in memory and reload them, to successfully compile
your design in the Quartus II software, you must first delete the following file from
the project directory before compiling your design:

<variation name>_coef_X.hex (where X is an integer)

These files are created by the FIR Compiler and are stored in the project directory you
specified when you ran the FIR Compiler.
© December 2010 Altera Corporation FIR Compiler User Guide

A–4 Appendix A: FIR Compiler Supported Device Structures
HardCopy II Support
FIR Compiler User Guide © December 2010 Altera Corporation

© December 2010 Altera Corporation
Additional Information
Revision History
The following table displays the revision history for this user guide.

Date Version Changes Made

December 2010 10.1 ■ Added preliminary support for Arria II GZ devices.

■ Updated support level to final support for Stratix IV GT devices.

July 2010 10.0 ■ Added preliminary support for Stratix V devices

■ Clarified that new filter coefficient set must be reordered before being reloaded, for all filter
structures

November 2009 9.1 ■ Maintenance release

■ Preliminary support for Cyclone III LS, Cyclone IV, and HardCopy IV GX devices

March 2009 9.0 ■ Added preliminary support for Arria® II GX

November 2008 8.1 ■ Full support for Stratix® III devices

■ Applied new technical publications style

■ Withdrawn support for UNIX

May 2008 8.0 ■ Full support for Cyclone® III devices

■ Preliminary support for Stratix IV devices

■ Option to automatically select memory block size for coefficient storage

■ Separate Getting Started and Parameter settings chapters

October 2007 7.2 ■ Full support for Arria™ GX devices

May 2007 7.1 ■ Added symmetric interpolation support

■ Preliminary Arria GX support

■ Full support for Stratix II GX and HardCopy® II devices.

December 2006 7.0 ■ Preliminary support for Cyclone® III

December 2006 6.1 ■ Preliminary support for Stratix III

■ Updated description for Avalon® Streaming interfaces

■ Added half-band decimator filter support

■ Minor updates throughout the user guide

April 2006 3.3.1 ■ Updated the performance information

■ Minor updates throughout the user guide

October 2005 3.3.0 ■ Updated features and release information

■ Added information to support new features

■ Preliminary support for Stratix II GX and HardCopy II

■ Updated screenshots

■ Updated many timing diagrams in Chapter 3
FIR Compiler User Guide

Info–2 Additional Information
How to Contact Altera
How to Contact Altera
For the most up-to-date information about Altera® products, refer to the following
table.

Typographic Conventions
This document uses the typographic conventions shown in the following table.

December 2004 3.2.0 ■ Updated screenshots

■ Updated system requirements

June 2004 3.1.0 ■ Updated release information and device family support tables

■ Updated the features

■ Added OpenCore Plus description

■ Added DSP Builder support information

■ Updated the performance information

■ Enhancements include support for Cyclone II devices; DSP Builder ready

Date Version Changes Made

Contact (1)
Contact
Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support
(General)

Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to table:

(1) You can also contact your local Altera sales office or sales representative.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicates command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box.

bold type Indicates directory names, project names, disk drive names, file names, file name
extensions, and software utility names. For example, \qdesigns directory, d: drive,
and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicates document titles. For example: AN 519: Stratix IV Design Guidelines.

Italic type Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicates keyboard keys and menu names. For example, Delete key and the Options
menu.
FIR Compiler User Guide © December 2010 Altera Corporation

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

Additional Information Info–3
Typographic Conventions
“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. Active-low signals are denoted by suffix n. Example: resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

1., 2., 3., and
a., b., c., and so on.

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

r The angled arrow instructs you to press the enter key.

f The feet direct you to more information about a particular topic.

Visual Cue Meaning
© December 2010 Altera Corporation FIR Compiler User Guide

Info–4 Additional Information
Typographic Conventions
FIR Compiler User Guide © December 2010 Altera Corporation

	FIR Compiler User Guide
	Contents
	1. About This Compiler
	Release Information
	Device Family Support
	Features
	General Description
	MegaCore Verification
	Performance and Resource Utilization
	Installation and Licensing
	OpenCore Plus Evaluation
	OpenCore Plus Time-Out Behavior

	2. Getting Started
	Design Flows
	DSP Builder Flow
	MegaWizard Plug-In Manager Flow
	Parameterize the MegaCore Function
	Generate the MegaCore Function
	Simulate the Design
	Compile the Design and Program a Device

	3. Parameter Settings
	Specifying the Coefficients
	Using the FIR Compiler Coefficient Generator
	Loading Coefficients from a File

	Analyzing the Coefficients
	Specify the Input and Output Specifications
	Specify the Architecture Specification
	Resource Estimates
	Filter Design Tips

	4. Functional Description
	FIR Compiler
	Number Systems and Fixed-Point Precision
	Generating or Importing Coefficients
	Structure Types
	Interpolation and Decimation
	Pipelining

	Simulation Output
	Avalon Streaming Interface
	Avalon-ST Data Transfer Timing

	Signals
	Timing Diagrams
	Reset and Global Clock Enable Operations
	Single Rate Filter Timing Diagram
	Interpolation Filter Timing Diagrams
	Decimation Filter Timing Diagrams
	Coefficient Reloading Timing Diagrams

	Referenced Documents

	A. FIR Compiler Supported Device Structures
	Supported Device Structures
	HardCopy II Support
	Compiling HardCopy II Designs

	Additional Information
	Revision History
	How to Contact Altera
	Typographic Conventions

