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Direct Sequence Spread
Spectrum (DSSS) Modem

Reference Design
Introduction Much of the signal processing performed in modern wireless 
communications systems—such as digital modulator/demodulator 
applications—takes place in the digital domain and requires high 
throughput. Dedicated hardware can provide the processing capability to 
meet this requirement. The parallel processing capability of Altera® 
programmable logic devices (PLDs) makes them ideal for 
baseband/intermediate frequency (IF) digital signal processing 
applications.

The direct sequence spread spectrum (DSSS) digital modem reference 
design is a hardware design that has been optimized for the Altera APEX™ 
DSP development board (starter version), which features an APEX 

EP20K200E device. The reference design is a spread spectrum 
modulator/demodulator subsystem that can be used as a starting point 
for a complete 3G or fixed wireless modem. The design highlights the ease 
of use, performance, and efficiency of implementing a design using Altera 
devices and DSP intellectual property (IP) cores. 

The design uses the correlator, FIR compiler, and NCO compiler 
MegaCore® functions, and uses 7,183 logic cells and achieves 100-MHz 
performance. A parameterizable UART and a Windows application 
enables communication between the APEX DSP development board and 
a PC via the board’s RS-232 interface, yielding a true development 
platform for intermediate frequency (IF) modem designs. The reference 
design includes VHDL source code (except for the IP cores), and a 
simulation library and test bench for simulation in ModelSim simulators.

Allocating channel resources using spread spectrum techniques are a 
favorable alternative to allocating channels using frequency division 
multiple access (FDMA) or time division multiple access (TDMA) 
schemes. By spreading the spectrum of the data to be transmitted with 
orthogonal codes, the receiver can decode each user’s data uniquely, even 
though many users share the same spectral and temporal channel 
resources. 
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FS 14: Direct Sequence Spread Spectrum (DSSS) Modem Reference Design
The two primary methods used to spread the baseband data spectrum are:

■ Frequency hopping spread spectrum (FHSS)—The frequency of the 
modulating carrier varies in a pseudo-random manner unique to 
each user.

■ Direct sequence spread spectrum (DSSS)—The data is spread by 
multiplication with a channelization code prior to up-conversion to 
an intermediate frequency.

Each method has its advantages and disadvantages. For example, in a 
DSSS systems, the designer can reduce narrowband interference in the 
same channel by increasing the processing gain, but this technique cannot 
be used in FHSS schemes. However, FHSS schemes are less susceptible to 
jamming and the receiver is easier to implement, usually requiring only a 
simple analog limiter/discriminator. 

This functional specification discusses the DSSS digital modem reference 
design. The design modulates direct sequence spread data onto an IF 
carrier. The modulated data is then input to a channel model and is passed 
to a digital receiver, which demodulates and recovers the data from the 
received IF signal. See Figure 1 on page 2. 

Figure 1. DSSS Modem Block Diagram

The design is implemented using Altera DSP MegaCore® functions, 
functions from the library of parameterized modules (LPM), and custom 
logic. The designer can download the application into the Altera APEX™ 
EP20K200E or EP20K1500E device on the APEX DSP development board 
(starter or professional version, respectively).

DSSS Overview Each user in a DSSS system has a channelization code that is orthogonal 
to the other codes in the system. The input data symbol di is spread by an 
N-element codeword ci to yield the spread data si as shown in the 
following equation:
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The resulting spread sequence rate, referred to as the chip rate, is 
increased to N times the original data rate. The code length parameter N 
is called the spreading factor. The receiver despreads the demodulated 
sequence by calculating the inner product of the received spread signal 
with a local copy of the channelization code that was used to spread it. The 
following discussion demonstrates the importance of using orthogonal 
codes. 

The received demodulated spread sequence is ri where

and n is noise channel induced noise.

The received signal is despread to yield ~di by the following 
calculations:

where:

■ m is a relative offset between the received down-converted sequence 
and the local copy of the despreading code

■ k1 and k2 are constants dependent on the code sequences concerned 
and the offset m

If i = j (the spreading code and the despreading code are identical) the 
receiver can recover the data from the demodulated spread sequence. The 
index of the local copy of the channelization codes must be aligned with 
the received spread sequence for the receiver to despread the data 
correctly. A temporal offset can lead to an incorrectly despread sequence. 
In reality, the receiver chooses the lag m such that the received signal and 
despreading codes are aligned.

The sign of k1di uniquely indicates the original binary value of di. 
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DSSS 
Modulator

Figure 2 shows a block diagram of the DSSS modulator. The modulator 
consists of a complex sequence spreader, a Nyquist pulse-shaping FIR 
filter, a digital oscillator, and a mixer.

Figure 2. DSSS Modulator Block Diagram

Two serial binary data channels form the inputs to the modulator. The I 
channel carries the data to be transmitted, i[n]. The Q channel carries a 
known repeating pilot sequence q[n], which the receiver uses to perform 
I-Q derotation and symbol recovery. (Generally, the Q channel is a control 
channel; it can also carry power control commands and link monitoring 
information to aid in hand-off procedures.)

Direct Sequence Spreader

The input sequences are combined to form the complex sequence i + jq 
and are spread by a complex spreader. The complex spreader has a 
spreading factor of 16 and codewords ci and cq. The resulting spread 
sequence quadrature components {si,sq} have a ternary symbol alphabet 
{-2,02} and are formed as shown in the following equations:

s[n] = si[n] + jsq[n] 

= (i[n] + jq[n]) × (ci[mod(n,16)] + jcq[mod(n,16)])

si[n] = i[n] × ci[mod(n,16)] – q[n] × cq[mod(n,16)]

sq[n] = i[n] × cq[mod(n,16)] + q[n] × ci[mod(n,16)]

The sequences si[n] and sq[n] have been spread to the chip rate—which is 
N times the input data rate, where N = 16. (This discussion does not 
consider scrambling the sequences using long or short scrambling codes, 
and this technique was not implemented in the DSSS modem reference 
design).
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FIR Filter

Next, the design filters the spread sequences using a pulse-shaping 
interpolating FIR filter. The FIR filter was created using the Altera FIR 
compiler MegaCore function. The filter is a 2-channel, 67-tap root-raised-
cosine filter with an excess bandwidth of 22%. The design uses a serial 
structure, which uses PLD resources efficiently. The serial architecture 
trades off throughput (clock cycles) for resources (PLD logic cells and 
embedded system blocks). Figure 3 shows the filter frequency response.

Figure 3. FIR Filter Parameters & Frequency Response

The filter takes the chip-rate spread data streams as input. First, the I and 
Q channel sequences are multiplexed into a single stream. The filter 
interpolates the data by a factor of 16 and is clocked at 100 MHz. The 
filtered data is output at the interpolated rate with 16 successive samples 
for each channel. The FIR compiler automatically generates a polyphase 
decomposed interpolation filter. This type of filter is usually smaller and 
runs faster than the conventional zero-stuffed FIR filters.
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The filter output data is demultiplexed into two FIFO buffers to yield two 
baseband filtered pulse streams at 50 MSPS. A simple state machine 
implements the necessary control and multiplexing/de-multiplexing 
functions. An additional block delays the I-channel output data after the 
demultiplexing and buffering stages to align the I- and Q-channel data.

Figure 4 shows a plot of the filter input spread sequence and the 
corresponding pulse-shaped data output.

Figure 4. Input Filter Spread Sequence Plot

Table 1 shows the resource usage of the FIR filters.

Table 1. FIR Filter Resource Usage

Design Logic Elements Embedded System 
Blocks

2-Channel Interpolating FIR Filter 1,365 1
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Numerically Controlled Oscillator

After filtering, the sequences are modulated onto quadrature carrier 
oscillators. The design’s numerically controlled oscillator (NCO) was 
created using the Altera NCO compiler MegaCore function. The NCO is a 
ROM-based implementation because of the high data rates required by 
the design. The NCO compiler small ROM option generates both sine and 
cosine waveforms while storing only 45 degrees of the waveform. 
Therefore, the NCO provides a high-quality oscillator using less 
APEX 20KE device embedded system blocks. The NCO compiler 
automatically generates a MATLAB simulation, which shows the 
spurious free dynamic range (SFDR) of the carrier waveform. Figure 5 on 
page 7 shows the frequency domain response of the NCO sine wave.

Figure 5. NCO Frequency Domain Response

A 24-bit phase accumulator generates the 12-bit NCO output precision, 
yielding an SFDR of greater than 75 dB using few PLD logic resources. The 
design requires a 25-MHz IF, which implies that there are four samples of 
the sinusoid per clock cycle; each clock cycle advances the carrier phase 90 
degrees. The multipliers perform the mixing operation modulating the 
quadrature carriers with the full 13-bit precision outputs of the FIR filter. 
The resulting signals are truncated to 10-bit resolution before being added 
to form the IF signal.
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Table 2 shows the resource usage of the NCO.

Modulator Design Files

The modulator uses 2,490 logic cells, which is 29% of available logic cell 
resources in an APEX EP20K200E device, and 6 embedded system blocks. 
Table 3 shows the modulator design files, which are located in the 
<path>\dsp_development_kit_v1.0.0\reference_design\dsss\quartus\
source directory.  

Channel Model The modem’s channel model exercises the receiver’s symbol recovery 
circuitry and the despreading code synchronization. In spread spectrum 
communications, synchronization is arguably the most important factor 
when correctly recovering the transmitted data. 

Table 2. NCO Resource Usage

Design Logic Elements Embedded System 
Blocks

NCO 178 4

Table 3. Modulator Design Files

Module Function

modulator.vhd Top-level modulator entity. Instantiates the modulator sub-entities.

complex_spreader.vhd Direct sequence complex spreader. Spreads the input data and pilot sequences by 
a complex code.

rrc_fir_16.tdf 2-channel interpolating RRC FIR filter. Implements the pulse-shaping filter.

fsm_mod.vhd State machine.Controls the FIR channel multiplexing and demultiplexing.

ififo.vhd FIFO. Buffers the dechannelized, interpolated filter output data.

delay_i_channel.vhd Delay register. Realigns the dechannelized I and Q sequences.

nco_mod.vhd Numerically controlled oscillator. Generates the quadrature IF carrier.

mult.vhd Multiplier. Performs mixing.

iqadd.vhd Adder. Adds the I and Q channel data to form the IF signal.
8 Altera Corporation
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The channel model lets the user introduce random data by pressing push-
button SW2 on the APEX DSP development board. While the user presses 
the push-button, the random data causes the receiver to lose both symbol 
and PN synchronization. When the user releases the push-button, the 
modulated IF signal is fed into the receiver again, which must reacquire 
I-Q derotation and PN synchronization. Table 4 shows the channel model 
design file, which is located in the 
<path>\dsp_development_kit_v1.0.0\reference_design\dsss\quartus\
source directory. 

Demodulator The demodulator down-converts the signal from IF to baseband and 
recovers the original data by despreading the demodulated sequences. 
Figure 6 shows the demodulator block diagram. 

Figure 6. Demodulator Block Diagram

Table 4. Channel Model Design File

Module Function

channel.vhd Channel model. Selects between the IF signal and random data to 
the receiver given user input on the APEX DSP development 
board.
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NCO

The receiver converts the 10-bit 25-MHz IF signal by mixing the incoming 
signal with the quadrature carrier output of a dual-output NCO using 
multipliers (refer to Figure 6 above). The NCO was created with the NCO 
compiler, using a small ROM architecture and the same parameters as the 
modulating NCO. Table 5 shows the resource usage of the NCO.

FIR Filters

Two root-raised-cosine FIR filters remove the higher frequency 
components created by the signal mixing. These 15-tap root-raised cosine 
filters have an excess bandwidth of 22% and were designed using the FIR 
compiler. The filters use a fully parallel architecture with extended 
pipelining. Extended pipeline architectures allow the user to achieve the 
desired performance quickly with automatic place-and route (in this case 
over 100 MSPS). 

Table 6 shows the resource usage of each FIR filter.

The combined filtering effect of the modulator and demodulator pulse-
shaping results in an overall raised-cosine filter response. This 
implementation reduces ISI, while allowing sufficient bandwidth to 
permit very small timing offsets in the sampling instances. 

Table 5. NCO Resource Usage

Design Logic Elements Embedded System 
Blocks

NCO 178 4

Table 6. FIR Filter Resource Usage

Design Logic Elements Embedded System 
Blocks

Parallel FIR FIlter 904 0
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Despreader

Next, the receiver despreads the demodulated sequences. The heart of the 
despreading and synchronization circuitry is the Altera correlator 
MegaCore function. The core provides aids in the alignment—to the 
granularity of 1/4 chip interval—of the local copy of the ci and cq codes 
with the incoming demodulated spread signal, and simultaneously 
despreads the sequence. 

The correlator calculates the complex correlation of the incoming signal, 
r = ri + jrq with the conjugate complex code c = ci - jcq over N lags m, to 
yield the complex sequence ai[m] + jaq[m] by the following equation:

Selecting the lag m—for which this correlation is greatest—and assuming 
that the design compensates for all other phase offsets, the correlation 
maxima uniquely specify the original unspread binary data.

Table 7 shows the resource usage of the correlator.

The filter output data for each channel (I and Q) is saturated and truncated 
to 4 bits. Then, the two channels are concatenated to form an 8-bit word. 
The concatenated output is passed to the correlator interface and buffered. 
A four-state Mealy state machine feeds the buffered data to the 
correlator’s internal buffer where it is decimated. For increased processing 
gain, the correlator has an oversampling factor of four (specified in the 
wizard). The correlator computes the 16 complex lag values, ai[m] and 
aq[m], on the I and Q channels, eruptively, for each of the 8 sections of a 
128-length block. 

a m[ ] r k m–[ ] c k[ ]×

k 0=

N 1–

�=

ai m[ ] jaq m[ ]+ ri k m–[ ] jrq k m–[ ]+( ) ci k[ ] jcq k[ ]–( )

k 0=

N 1–
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Table 7. Correlator Resource Usage

Design Logic Elements Embedded System 
Blocks

Correlator 861 2
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A second three-state Mealy-type state machine controls which channel lag 
data is computed and switches between codes ci and cq accordingly. 
While the correlator processes data for the next 16-chip section of the 
128-length block, this state-machine goes into an idle state 
(WAIT_FOR_RESULTS), signaling to a peak-detection circuit that a new 
set of lag values are ready and that location of the correlation maximum 
for the current section should begin. 

The peak detection circuit operation is controlled by a 5-state state-
machine (see Figure 7). The peak detection state transitions from 
WAIT_FOR_RIQ to WRITE_RIQ when the correlator indicates via the 
riq_ready signal that new lag data is available.

Figure 7. Peak Detection Circuit Operation

For each lag index m, a pair of samples ai[m] and aq[m] is written into an 
array. The complex magnitude of the sample pair, Riq[m] is calculated as 
shown in the following equation:

WAIT_FOR_RIQ

GET_IQ WRITE_RIQ

FIND_MAX FIND_SQUARES
mux_cnt = 4

index_riq = 16

index_riq! = 16

riq_ready = 0

riq_ready = 1

mux_cnt! = 4

Riq m[ ] ai m[ ]2
aq m[ ]2

+= m 0…15=
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The squaring function is implemented by a look-up-table to conserve logic 
cell resources. The table is shared between the I and Q lag data, and 
requires four clock cycles to compute Riq[m]. A counter, mux_cnt, 
indicates when the operation is complete and the state transitions from 
FIND_SQUARES to FIND_MAX. Riq[m] is compared to the previously 
stored maximum. If it is greater, its lag index and magnitude are stored, 
and the next available lag values, ai[m] and aq[m], are stored to an 
incremented array position. This process is repeated for each of the 16 
lags, after which the state transitions to GET_IQ. Once the index of the 
correlation maximum, mmax has been located, the sign of the values 
ai[mmax] and aq[mmax] in the stored array indicate the despread sequences 
i[n] and q[n]. The despread pilot sequence q[n] is passed to the 
synchronization monitor while the despread data sequence i[n] is output 
to the UART interface. 

The peak detection logic increments a block counter to keep track of how 
many symbols of the block of 8 symbols (128 chips) have been despread. 
Then it returns to the idle state, WAIT_FOR_RIQ, until the correlator 
indicates that it has the next lag data available. After the full block is 
processed, the peak detection circuit sends a processing complete 
indication to the correlator interface. The correlator then begins 
processing the data read in from the input-side buffer for the next block of 
128 chips.

The system clocks the despreading portion of the demodulator at half the 
rate of the down-conversion circuitry. This rate is twice what is needed to 
compute the required 128 complex lags for each block because the 
correlator decimates the FIR filter output rate by four. This redundancy 
allows the peak detection circuit to work on each set of 16 complex lag 
values before the next set of lag values for the next section is available. 
After the correlator reads the last data for the 128-chip block from its input 
buffer, it initiates a reads of the next block. Therefore, the block correlator 
operates in a continuous manner. The APEX 20KE device’s on-chip PLL 
generates the required 100- and 50-MHz clocks from the 40-MHz on-
board crystal clock. 

The sign of the ai[mmax] and aq[mmax] values always yield the original 
data sequence, i[n] and the pilot sequence q[n] if the phase rotation 
induced by the system latency and channel is an integer multiple of 2π 
radians. However, this situation may not occur all of the time. Any 
rotations of the signal before demodulation can cause the I-Q channels to 
interchange, be inverted, or a combination of these effects. Because the 
pilot sequence is known prior to transmission, the system can compensate 
for rotations or offsets that do occur using a symbol recovery circuit.
Altera Corporation 13
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The synchronization block shown in Figure 6 on page 9 monitors the 
resulting despread pilot sequence for errors. After the number of errors in 
the 8-bit repeating pilot sequence reaches a pre-defined threshold, the 
system can assume that the phase alignment of the incoming signal is 
offset. The system can then shift the position of the sampling point of the 
incoming signal relative to the rest of the demodulator in time until errors 
are not observed in the pilot sequence. A locked condition is assumed and 
the input sampling instance remains fixed. Upon detecting pilot errors, 
the system re-initiates this process to reacquire synchronization. The 
waveform in Figure 8 illustrates the operation of the pilot monitor and the 
symbol recovery blocks.

Figure 8. Pilot Monitor & Symbol Recover Blocks

Initially, the receiver is synchronized to the incoming data and the 
received despread pilot signal q_pilot matches the locally generated 
pilot sequence q_check. Hence locked remains high and the output 
despread sequences i_out and q_out match the corresponding input 
sequences data_i and data_q. After 1.6 ms the input signal shift is 
asserted, introducing random data into the demodulator. The receiver is 
seen to lose synchronization shortly thereafter. While the signals 
q_pilot and q_check continue to show discrepancies, the sampling 
instance of the demodulator input signal is shifted as described above 
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until synchronization is reacquired. After the pilot monitor detects no 
errors for a defined duration the monitor assumes that the receiver has 
regained synchronization and reasserts the locked signal.

Demodulator Design Files

The demodulator design uses 4,353 logic cells (which is 53% of the 
available logic cell resources in an APEX EP20K200E device) and 13 
embedded system blocks. Table 8 gives a description of the demodulator 
design files. 

Table 8. Demodulator Design Files

Module Function

demodulator.vhd Top-level demodulator entity. Contains a netlist of all the demodulator sub-entities.

Mult_d.vhd Multiplier. Performs down-conversion multiplication.

Nco_demod.vhd Altera NCO Compiler MegaCore function. Generates the quadrature IF carrier.

rrc_fir_par.v Altera FIR Compiler MegaCore function. Implements the parallel demodulator pulse-
shaping root-raised cosine filter.

Ram_in.vhd Down-converter output buffer. Stores the data from down-converter to be used by 
the correlator.

Corr_interface_syn.vhd Correlator interface. Implements the data control interface to the correlator.

dsss_corr.vhd Altera correlator MegaCore function. Correlates the incoming sequences with the 
locally stored channelization codes.

peak_detect.vhd Peak detection circuit. Locates the lag index of the correlation maxima.

riq_rom.vhd Internal ROM. Performs the squaring function used to calculate the polar magnitude 
of the correlator output lag data.

Ram_out.vhd Peak detection output buffer. Holds the buffer despread I and Q channel data.

sync_monitor.vhd Pilot sequence monitor. Monitors the pilot channel output for errors.

Sym_recovery.vhd Symbol recovery. Shifts the sample instance of the demodulator input signal.
Altera Corporation 15
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Simulation in 
ModelSim

Altera provides a simulation library and testbench to exercise the design 
in the ModelSim simulators version 5.5b or later. The testbench design is 
named dsss_tb.vhd and is located in the <path to DSSS reference 
design>\examples\dsss\simulation directory. Altera also provides a 
macro file, run_dsss_tb.do. To run the design, perform the following 
steps at the ModelSim command prompt:

1. Change to the DSSS simulation directory:

cd <path to DSSS reference design>/examples/dsss/simulation

2. Choose Execute Macro (Macro menu).

3. Select the file run_dsss_tb.do and click Open. The macro runs the 
testbench and outputs the results to the ModelSim waveform viewer.

UART Interface Altera also provides a UART and an interface between it and the DSSS 
modem with the reference design to allow communication between the 
APEX DSP development board and a PC. The designer can send input 
data from a PC’s serial port to the UART implemented in the APEX DSP 
development board via an RS-232 cable using an Altera-provided 
Windows application. The application provides a graphical plot of the 
input serial data and the resulting output. The designer can view the 
effects of synchronization loss by pressing the switch SW3 on the board. 
Figure 9 shows a block diagram of the UART and interface to the DSSS 
modem.

Figure 9. UART/ DSSS Modem Interface

Figure 10 shows a screen shot of the Windows application.
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Figure 10. Windows Application

\

f Refer to the DSSS Modem Lab White Paper for instructions on how to use 
the Windows application with the APEX DSP development board and a 
PC.
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Table 9 gives a description of the UART/DSSS modem interface design 
files

Table 10 gives the resource usage for the complete design. 

Table 9. UART/DSSS Modem Interface Design Files

Module Function

top_level_dsss.vhd Top-level file. Instantiates the phase-locked loop, DSSS modem, and the UART.

dsss.vhd Modem netlist. Instantiates the modulator, channel, and demodulator entities.

altera_uart.vhd UART. Allows communication between the APEX DSP development board and the PC.

receiver.vhd UART receiver. Receives data from the PC and outputs it to the on-chip receive buffer.

transmitter.vhd UART transmitter. Transmits serial data from the on-chip transmit buffer to the PC.

div_clk.vhd Clock divider. Generates the internal UART baud clock.

clkpll.vhd Altera ClockLock megafunction. Generates the 100-MHz and 50-MHZ clocks from the on-
board 40-MHz crystal oscillator.

Uart_rec_buf.vhd On-chip receive buffer. Bridges between the UART and the input to the DSSS modem.

Uart_tx_buf.vhd On-chip transmit buffer. Bridges between the DSSS modem output and the UART.

uart_interface.vhd Provides the UART/modem data flow control.

Table 10. UART Interface & DSSS Modem Design Resource Usage

Logic Cells ESBs % Utilization Performance

7,183 22 86 100 MHz
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