
September 2001, ver. 1.0 Functional Specification 14

Direct Sequence Spread
Spectrum (DSSS) Modem

Reference Design
Introduction Much of the signal processing performed in modern wireless
communications systems—such as digital modulator/demodulator
applications—takes place in the digital domain and requires high
throughput. Dedicated hardware can provide the processing capability to
meet this requirement. The parallel processing capability of Altera®
programmable logic devices (PLDs) makes them ideal for
baseband/intermediate frequency (IF) digital signal processing
applications.

The direct sequence spread spectrum (DSSS) digital modem reference
design is a hardware design that has been optimized for the Altera APEX™
DSP development board (starter version), which features an APEX

EP20K200E device. The reference design is a spread spectrum
modulator/demodulator subsystem that can be used as a starting point
for a complete 3G or fixed wireless modem. The design highlights the ease
of use, performance, and efficiency of implementing a design using Altera
devices and DSP intellectual property (IP) cores.

The design uses the correlator, FIR compiler, and NCO compiler
MegaCore® functions, and uses 7,183 logic cells and achieves 100-MHz
performance. A parameterizable UART and a Windows application
enables communication between the APEX DSP development board and
a PC via the board’s RS-232 interface, yielding a true development
platform for intermediate frequency (IF) modem designs. The reference
design includes VHDL source code (except for the IP cores), and a
simulation library and test bench for simulation in ModelSim simulators.

Allocating channel resources using spread spectrum techniques are a
favorable alternative to allocating channels using frequency division
multiple access (FDMA) or time division multiple access (TDMA)
schemes. By spreading the spectrum of the data to be transmitted with
orthogonal codes, the receiver can decode each user’s data uniquely, even
though many users share the same spectral and temporal channel
resources.
Altera Corporation 1

A-FS-14-1.0

FS 14: Direct Sequence Spread Spectrum (DSSS) Modem Reference Design
The two primary methods used to spread the baseband data spectrum are:

■ Frequency hopping spread spectrum (FHSS)—The frequency of the
modulating carrier varies in a pseudo-random manner unique to
each user.

■ Direct sequence spread spectrum (DSSS)—The data is spread by
multiplication with a channelization code prior to up-conversion to
an intermediate frequency.

Each method has its advantages and disadvantages. For example, in a
DSSS systems, the designer can reduce narrowband interference in the
same channel by increasing the processing gain, but this technique cannot
be used in FHSS schemes. However, FHSS schemes are less susceptible to
jamming and the receiver is easier to implement, usually requiring only a
simple analog limiter/discriminator.

This functional specification discusses the DSSS digital modem reference
design. The design modulates direct sequence spread data onto an IF
carrier. The modulated data is then input to a channel model and is passed
to a digital receiver, which demodulates and recovers the data from the
received IF signal. See Figure 1 on page 2.

Figure 1. DSSS Modem Block Diagram

The design is implemented using Altera DSP MegaCore® functions,
functions from the library of parameterized modules (LPM), and custom
logic. The designer can download the application into the Altera APEX™
EP20K200E or EP20K1500E device on the APEX DSP development board
(starter or professional version, respectively).

DSSS Overview Each user in a DSSS system has a channelization code that is orthogonal
to the other codes in the system. The input data symbol di is spread by an
N-element codeword ci to yield the spread data si as shown in the
following equation:

Modulator Channel Demodulator

I Data

Q Data

IF Signal
Out IF Signal In I Data

Q Data

si ci di×=
2 Altera Corporation

FS 14: Direct Sequence Spread Spectrum (DSSS) Modem Reference Design
The resulting spread sequence rate, referred to as the chip rate, is
increased to N times the original data rate. The code length parameter N
is called the spreading factor. The receiver despreads the demodulated
sequence by calculating the inner product of the received spread signal
with a local copy of the channelization code that was used to spread it. The
following discussion demonstrates the importance of using orthogonal
codes.

The received demodulated spread sequence is ri where

and n is noise channel induced noise.

The received signal is despread to yield ~di by the following
calculations:

where:

■ m is a relative offset between the received down-converted sequence
and the local copy of the despreading code

■ k1 and k2 are constants dependent on the code sequences concerned
and the offset m

If i = j (the spreading code and the despreading code are identical) the
receiver can recover the data from the demodulated spread sequence. The
index of the local copy of the channelization codes must be aligned with
the received spread sequence for the receiver to despread the data
correctly. A temporal offset can lead to an incorrectly despread sequence.
In reality, the receiver chooses the lag m such that the received signal and
despreading codes are aligned.

The sign of k1di uniquely indicates the original binary value of di.

ri si n+=

d̃i ri ci,� �=

cidi n cj,+� �=

di ci cj,� � n cj,� �+=

di ci k[]cj k m–[]

k 0=

N 1–

�� �
� �
� �

ñ+=

k1d
i

ñ+ i j= m 0=,

k2± di ñ+ i j= m 0≠,

ñ i j≠	

�

�

=

Altera Corporation 3

FS 14: Direct Sequence Spread Spectrum (DSSS) Modem Reference Design
DSSS
Modulator

Figure 2 shows a block diagram of the DSSS modulator. The modulator
consists of a complex sequence spreader, a Nyquist pulse-shaping FIR
filter, a digital oscillator, and a mixer.

Figure 2. DSSS Modulator Block Diagram

Two serial binary data channels form the inputs to the modulator. The I
channel carries the data to be transmitted, i[n]. The Q channel carries a
known repeating pilot sequence q[n], which the receiver uses to perform
I-Q derotation and symbol recovery. (Generally, the Q channel is a control
channel; it can also carry power control commands and link monitoring
information to aid in hand-off procedures.)

Direct Sequence Spreader

The input sequences are combined to form the complex sequence i + jq
and are spread by a complex spreader. The complex spreader has a
spreading factor of 16 and codewords ci and cq. The resulting spread
sequence quadrature components {si,sq} have a ternary symbol alphabet
{-2,02} and are formed as shown in the following equations:

s[n] = si[n] + jsq[n]

= (i[n] + jq[n]) × (ci[mod(n,16)] + jcq[mod(n,16)])

si[n] = i[n] × ci[mod(n,16)] – q[n] × cq[mod(n,16)]

sq[n] = i[n] × cq[mod(n,16)] + q[n] × ci[mod(n,16)]

The sequences si[n] and sq[n] have been spread to the chip rate—which is
N times the input data rate, where N = 16. (This discussion does not
consider scrambling the sequences using long or short scrambling codes,
and this technique was not implemented in the DSSS modem reference
design).

FIFO
Direct

Sequence
Spreader

FSM

NCO

I (Data)

Q (Pilot)

IF Signal

2-Channel
Interpolating

RRC FIR
Filter

FIFO

Altera MegaCore Functions

LPM Functions

Custom/Glue Logic
4 Altera Corporation

FS 14: Direct Sequence Spread Spectrum (DSSS) Modem Reference Design
FIR Filter

Next, the design filters the spread sequences using a pulse-shaping
interpolating FIR filter. The FIR filter was created using the Altera FIR
compiler MegaCore function. The filter is a 2-channel, 67-tap root-raised-
cosine filter with an excess bandwidth of 22%. The design uses a serial
structure, which uses PLD resources efficiently. The serial architecture
trades off throughput (clock cycles) for resources (PLD logic cells and
embedded system blocks). Figure 3 shows the filter frequency response.

Figure 3. FIR Filter Parameters & Frequency Response

The filter takes the chip-rate spread data streams as input. First, the I and
Q channel sequences are multiplexed into a single stream. The filter
interpolates the data by a factor of 16 and is clocked at 100 MHz. The
filtered data is output at the interpolated rate with 16 successive samples
for each channel. The FIR compiler automatically generates a polyphase
decomposed interpolation filter. This type of filter is usually smaller and
runs faster than the conventional zero-stuffed FIR filters.
Altera Corporation 5

FS 14: Direct Sequence Spread Spectrum (DSSS) Modem Reference Design
The filter output data is demultiplexed into two FIFO buffers to yield two
baseband filtered pulse streams at 50 MSPS. A simple state machine
implements the necessary control and multiplexing/de-multiplexing
functions. An additional block delays the I-channel output data after the
demultiplexing and buffering stages to align the I- and Q-channel data.

Figure 4 shows a plot of the filter input spread sequence and the
corresponding pulse-shaped data output.

Figure 4. Input Filter Spread Sequence Plot

Table 1 shows the resource usage of the FIR filters.

Table 1. FIR Filter Resource Usage

Design Logic Elements Embedded System
Blocks

2-Channel Interpolating FIR Filter 1,365 1
6 Altera Corporation

FS 14: Direct Sequence Spread Spectrum (DSSS) Modem Reference Design
Numerically Controlled Oscillator

After filtering, the sequences are modulated onto quadrature carrier
oscillators. The design’s numerically controlled oscillator (NCO) was
created using the Altera NCO compiler MegaCore function. The NCO is a
ROM-based implementation because of the high data rates required by
the design. The NCO compiler small ROM option generates both sine and
cosine waveforms while storing only 45 degrees of the waveform.
Therefore, the NCO provides a high-quality oscillator using less
APEX 20KE device embedded system blocks. The NCO compiler
automatically generates a MATLAB simulation, which shows the
spurious free dynamic range (SFDR) of the carrier waveform. Figure 5 on
page 7 shows the frequency domain response of the NCO sine wave.

Figure 5. NCO Frequency Domain Response

A 24-bit phase accumulator generates the 12-bit NCO output precision,
yielding an SFDR of greater than 75 dB using few PLD logic resources. The
design requires a 25-MHz IF, which implies that there are four samples of
the sinusoid per clock cycle; each clock cycle advances the carrier phase 90
degrees. The multipliers perform the mixing operation modulating the
quadrature carriers with the full 13-bit precision outputs of the FIR filter.
The resulting signals are truncated to 10-bit resolution before being added
to form the IF signal.
Altera Corporation 7

FS 14: Direct Sequence Spread Spectrum (DSSS) Modem Reference Design
Table 2 shows the resource usage of the NCO.

Modulator Design Files

The modulator uses 2,490 logic cells, which is 29% of available logic cell
resources in an APEX EP20K200E device, and 6 embedded system blocks.
Table 3 shows the modulator design files, which are located in the
<path>\dsp_development_kit_v1.0.0\reference_design\dsss\quartus\
source directory.

Channel Model The modem’s channel model exercises the receiver’s symbol recovery
circuitry and the despreading code synchronization. In spread spectrum
communications, synchronization is arguably the most important factor
when correctly recovering the transmitted data.

Table 2. NCO Resource Usage

Design Logic Elements Embedded System
Blocks

NCO 178 4

Table 3. Modulator Design Files

Module Function

modulator.vhd Top-level modulator entity. Instantiates the modulator sub-entities.

complex_spreader.vhd Direct sequence complex spreader. Spreads the input data and pilot sequences by
a complex code.

rrc_fir_16.tdf 2-channel interpolating RRC FIR filter. Implements the pulse-shaping filter.

fsm_mod.vhd State machine.Controls the FIR channel multiplexing and demultiplexing.

ififo.vhd FIFO. Buffers the dechannelized, interpolated filter output data.

delay_i_channel.vhd Delay register. Realigns the dechannelized I and Q sequences.

nco_mod.vhd Numerically controlled oscillator. Generates the quadrature IF carrier.

mult.vhd Multiplier. Performs mixing.

iqadd.vhd Adder. Adds the I and Q channel data to form the IF signal.
8 Altera Corporation

FS 14: Direct Sequence Spread Spectrum (DSSS) Modem Reference Design
The channel model lets the user introduce random data by pressing push-
button SW2 on the APEX DSP development board. While the user presses
the push-button, the random data causes the receiver to lose both symbol
and PN synchronization. When the user releases the push-button, the
modulated IF signal is fed into the receiver again, which must reacquire
I-Q derotation and PN synchronization. Table 4 shows the channel model
design file, which is located in the
<path>\dsp_development_kit_v1.0.0\reference_design\dsss\quartus\
source directory.

Demodulator The demodulator down-converts the signal from IF to baseband and
recovers the original data by despreading the demodulated sequences.
Figure 6 shows the demodulator block diagram.

Figure 6. Demodulator Block Diagram

Table 4. Channel Model Design File

Module Function

channel.vhd Channel model. Selects between the IF signal and random data to
the receiver given user input on the APEX DSP development
board.

Symbol
Recovery

Synchronization

NCO

I (Data)

Q (Pilot)

Altera MegaCore
Functions

LPM Functions

Custom/Glue
Logic

FIR

FIR

IF Input Buffer Correlator Peak
Detect

Buffer

Control
Altera Corporation 9

FS 14: Direct Sequence Spread Spectrum (DSSS) Modem Reference Design
NCO

The receiver converts the 10-bit 25-MHz IF signal by mixing the incoming
signal with the quadrature carrier output of a dual-output NCO using
multipliers (refer to Figure 6 above). The NCO was created with the NCO
compiler, using a small ROM architecture and the same parameters as the
modulating NCO. Table 5 shows the resource usage of the NCO.

FIR Filters

Two root-raised-cosine FIR filters remove the higher frequency
components created by the signal mixing. These 15-tap root-raised cosine
filters have an excess bandwidth of 22% and were designed using the FIR
compiler. The filters use a fully parallel architecture with extended
pipelining. Extended pipeline architectures allow the user to achieve the
desired performance quickly with automatic place-and route (in this case
over 100 MSPS).

Table 6 shows the resource usage of each FIR filter.

The combined filtering effect of the modulator and demodulator pulse-
shaping results in an overall raised-cosine filter response. This
implementation reduces ISI, while allowing sufficient bandwidth to
permit very small timing offsets in the sampling instances.

Table 5. NCO Resource Usage

Design Logic Elements Embedded System
Blocks

NCO 178 4

Table 6. FIR Filter Resource Usage

Design Logic Elements Embedded System
Blocks

Parallel FIR FIlter 904 0
10 Altera Corporation

FS 14: Direct Sequence Spread Spectrum (DSSS) Modem Reference Design
Despreader

Next, the receiver despreads the demodulated sequences. The heart of the
despreading and synchronization circuitry is the Altera correlator
MegaCore function. The core provides aids in the alignment—to the
granularity of 1/4 chip interval—of the local copy of the ci and cq codes
with the incoming demodulated spread signal, and simultaneously
despreads the sequence.

The correlator calculates the complex correlation of the incoming signal,
r = ri + jrq with the conjugate complex code c = ci - jcq over N lags m, to
yield the complex sequence ai[m] + jaq[m] by the following equation:

Selecting the lag m—for which this correlation is greatest—and assuming
that the design compensates for all other phase offsets, the correlation
maxima uniquely specify the original unspread binary data.

Table 7 shows the resource usage of the correlator.

The filter output data for each channel (I and Q) is saturated and truncated
to 4 bits. Then, the two channels are concatenated to form an 8-bit word.
The concatenated output is passed to the correlator interface and buffered.
A four-state Mealy state machine feeds the buffered data to the
correlator’s internal buffer where it is decimated. For increased processing
gain, the correlator has an oversampling factor of four (specified in the
wizard). The correlator computes the 16 complex lag values, ai[m] and
aq[m], on the I and Q channels, eruptively, for each of the 8 sections of a
128-length block.

a m[] r k m–[] c k[]×

k 0=

N 1–

�=

ai m[] jaq m[]+ ri k m–[] jrq k m–[]+() ci k[] jcq k[]–()

k 0=

N 1–

�=

Table 7. Correlator Resource Usage

Design Logic Elements Embedded System
Blocks

Correlator 861 2
Altera Corporation 11

FS 14: Direct Sequence Spread Spectrum (DSSS) Modem Reference Design
A second three-state Mealy-type state machine controls which channel lag
data is computed and switches between codes ci and cq accordingly.
While the correlator processes data for the next 16-chip section of the
128-length block, this state-machine goes into an idle state
(WAIT_FOR_RESULTS), signaling to a peak-detection circuit that a new
set of lag values are ready and that location of the correlation maximum
for the current section should begin.

The peak detection circuit operation is controlled by a 5-state state-
machine (see Figure 7). The peak detection state transitions from
WAIT_FOR_RIQ to WRITE_RIQ when the correlator indicates via the
riq_ready signal that new lag data is available.

Figure 7. Peak Detection Circuit Operation

For each lag index m, a pair of samples ai[m] and aq[m] is written into an
array. The complex magnitude of the sample pair, Riq[m] is calculated as
shown in the following equation:

WAIT_FOR_RIQ

GET_IQ WRITE_RIQ

FIND_MAX FIND_SQUARES
mux_cnt = 4

index_riq = 16

index_riq! = 16

riq_ready = 0

riq_ready = 1

mux_cnt! = 4

Riq m[] ai m[]2
aq m[]2

+= m 0…15=
12 Altera Corporation

FS 14: Direct Sequence Spread Spectrum (DSSS) Modem Reference Design
The squaring function is implemented by a look-up-table to conserve logic
cell resources. The table is shared between the I and Q lag data, and
requires four clock cycles to compute Riq[m]. A counter, mux_cnt,
indicates when the operation is complete and the state transitions from
FIND_SQUARES to FIND_MAX. Riq[m] is compared to the previously
stored maximum. If it is greater, its lag index and magnitude are stored,
and the next available lag values, ai[m] and aq[m], are stored to an
incremented array position. This process is repeated for each of the 16
lags, after which the state transitions to GET_IQ. Once the index of the
correlation maximum, mmax has been located, the sign of the values
ai[mmax] and aq[mmax] in the stored array indicate the despread sequences
i[n] and q[n]. The despread pilot sequence q[n] is passed to the
synchronization monitor while the despread data sequence i[n] is output
to the UART interface.

The peak detection logic increments a block counter to keep track of how
many symbols of the block of 8 symbols (128 chips) have been despread.
Then it returns to the idle state, WAIT_FOR_RIQ, until the correlator
indicates that it has the next lag data available. After the full block is
processed, the peak detection circuit sends a processing complete
indication to the correlator interface. The correlator then begins
processing the data read in from the input-side buffer for the next block of
128 chips.

The system clocks the despreading portion of the demodulator at half the
rate of the down-conversion circuitry. This rate is twice what is needed to
compute the required 128 complex lags for each block because the
correlator decimates the FIR filter output rate by four. This redundancy
allows the peak detection circuit to work on each set of 16 complex lag
values before the next set of lag values for the next section is available.
After the correlator reads the last data for the 128-chip block from its input
buffer, it initiates a reads of the next block. Therefore, the block correlator
operates in a continuous manner. The APEX 20KE device’s on-chip PLL
generates the required 100- and 50-MHz clocks from the 40-MHz on-
board crystal clock.

The sign of the ai[mmax] and aq[mmax] values always yield the original
data sequence, i[n] and the pilot sequence q[n] if the phase rotation
induced by the system latency and channel is an integer multiple of 2π
radians. However, this situation may not occur all of the time. Any
rotations of the signal before demodulation can cause the I-Q channels to
interchange, be inverted, or a combination of these effects. Because the
pilot sequence is known prior to transmission, the system can compensate
for rotations or offsets that do occur using a symbol recovery circuit.
Altera Corporation 13

FS 14: Direct Sequence Spread Spectrum (DSSS) Modem Reference Design
The synchronization block shown in Figure 6 on page 9 monitors the
resulting despread pilot sequence for errors. After the number of errors in
the 8-bit repeating pilot sequence reaches a pre-defined threshold, the
system can assume that the phase alignment of the incoming signal is
offset. The system can then shift the position of the sampling point of the
incoming signal relative to the rest of the demodulator in time until errors
are not observed in the pilot sequence. A locked condition is assumed and
the input sampling instance remains fixed. Upon detecting pilot errors,
the system re-initiates this process to reacquire synchronization. The
waveform in Figure 8 illustrates the operation of the pilot monitor and the
symbol recovery blocks.

Figure 8. Pilot Monitor & Symbol Recover Blocks

Initially, the receiver is synchronized to the incoming data and the
received despread pilot signal q_pilot matches the locally generated
pilot sequence q_check. Hence locked remains high and the output
despread sequences i_out and q_out match the corresponding input
sequences data_i and data_q. After 1.6 ms the input signal shift is
asserted, introducing random data into the demodulator. The receiver is
seen to lose synchronization shortly thereafter. While the signals
q_pilot and q_check continue to show discrepancies, the sampling
instance of the demodulator input signal is shifted as described above
14 Altera Corporation

FS 14: Direct Sequence Spread Spectrum (DSSS) Modem Reference Design
until synchronization is reacquired. After the pilot monitor detects no
errors for a defined duration the monitor assumes that the receiver has
regained synchronization and reasserts the locked signal.

Demodulator Design Files

The demodulator design uses 4,353 logic cells (which is 53% of the
available logic cell resources in an APEX EP20K200E device) and 13
embedded system blocks. Table 8 gives a description of the demodulator
design files.

Table 8. Demodulator Design Files

Module Function

demodulator.vhd Top-level demodulator entity. Contains a netlist of all the demodulator sub-entities.

Mult_d.vhd Multiplier. Performs down-conversion multiplication.

Nco_demod.vhd Altera NCO Compiler MegaCore function. Generates the quadrature IF carrier.

rrc_fir_par.v Altera FIR Compiler MegaCore function. Implements the parallel demodulator pulse-
shaping root-raised cosine filter.

Ram_in.vhd Down-converter output buffer. Stores the data from down-converter to be used by
the correlator.

Corr_interface_syn.vhd Correlator interface. Implements the data control interface to the correlator.

dsss_corr.vhd Altera correlator MegaCore function. Correlates the incoming sequences with the
locally stored channelization codes.

peak_detect.vhd Peak detection circuit. Locates the lag index of the correlation maxima.

riq_rom.vhd Internal ROM. Performs the squaring function used to calculate the polar magnitude
of the correlator output lag data.

Ram_out.vhd Peak detection output buffer. Holds the buffer despread I and Q channel data.

sync_monitor.vhd Pilot sequence monitor. Monitors the pilot channel output for errors.

Sym_recovery.vhd Symbol recovery. Shifts the sample instance of the demodulator input signal.
Altera Corporation 15

FS 14: Direct Sequence Spread Spectrum (DSSS) Modem Reference Design
Simulation in
ModelSim

Altera provides a simulation library and testbench to exercise the design
in the ModelSim simulators version 5.5b or later. The testbench design is
named dsss_tb.vhd and is located in the <path to DSSS reference
design>\examples\dsss\simulation directory. Altera also provides a
macro file, run_dsss_tb.do. To run the design, perform the following
steps at the ModelSim command prompt:

1. Change to the DSSS simulation directory:

cd <path to DSSS reference design>/examples/dsss/simulation

2. Choose Execute Macro (Macro menu).

3. Select the file run_dsss_tb.do and click Open. The macro runs the
testbench and outputs the results to the ModelSim waveform viewer.

UART Interface Altera also provides a UART and an interface between it and the DSSS
modem with the reference design to allow communication between the
APEX DSP development board and a PC. The designer can send input
data from a PC’s serial port to the UART implemented in the APEX DSP
development board via an RS-232 cable using an Altera-provided
Windows application. The application provides a graphical plot of the
input serial data and the resulting output. The designer can view the
effects of synchronization loss by pressing the switch SW3 on the board.
Figure 9 shows a block diagram of the UART and interface to the DSSS
modem.

Figure 9. UART/ DSSS Modem Interface

Figure 10 shows a screen shot of the Windows application.

PLL

UART

RX_Buffer

TX_Buffer

DSSS
Modem

XTAL Clock

Reset

Txdata
Rxdata

reset

clk

clk2

input

output

Channel_shiftshift_channel
16 Altera Corporation

FS 14: Direct Sequence Spread Spectrum (DSSS) Modem Reference Design
Figure 10. Windows Application

\

f Refer to the DSSS Modem Lab White Paper for instructions on how to use
the Windows application with the APEX DSP development board and a
PC.
Altera Corporation 17

FS 14: Direct Sequence Spread Spectrum (DSSS) Modem Reference Design
Table 9 gives a description of the UART/DSSS modem interface design
files

Table 10 gives the resource usage for the complete design.

Table 9. UART/DSSS Modem Interface Design Files

Module Function

top_level_dsss.vhd Top-level file. Instantiates the phase-locked loop, DSSS modem, and the UART.

dsss.vhd Modem netlist. Instantiates the modulator, channel, and demodulator entities.

altera_uart.vhd UART. Allows communication between the APEX DSP development board and the PC.

receiver.vhd UART receiver. Receives data from the PC and outputs it to the on-chip receive buffer.

transmitter.vhd UART transmitter. Transmits serial data from the on-chip transmit buffer to the PC.

div_clk.vhd Clock divider. Generates the internal UART baud clock.

clkpll.vhd Altera ClockLock megafunction. Generates the 100-MHz and 50-MHZ clocks from the on-
board 40-MHz crystal oscillator.

Uart_rec_buf.vhd On-chip receive buffer. Bridges between the UART and the input to the DSSS modem.

Uart_tx_buf.vhd On-chip transmit buffer. Bridges between the DSSS modem output and the UART.

uart_interface.vhd Provides the UART/modem data flow control.

Table 10. UART Interface & DSSS Modem Design Resource Usage

Logic Cells ESBs % Utilization Performance

7,183 22 86 100 MHz
18 Altera Corporation

Printed on Recycled Paper.

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com
Applications Hotline:
(800) 800-EPLD
Literature Services:
lit_req@altera.com

Copyright 2001 Altera Corporation. Altera, The Programmable Solutions Company, the stylized Altera logo,
specific device designations, and all other words and logos that are identified as trademarks and/or service
marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and
other countries. All other product or service names are the property of their respective holders. Altera products
are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and
copyrights. Altera warrants performance of its semiconductor products to current
specifications in accordance with Altera’s standard warranty, but reserves the right to
make changes to any products and services at any time without notice. Altera assumes no
responsibility or liability arising out of the application or use of any information, product,
or service described herein except as expressly agreed to in writing by Altera Corporation.
Altera customers are advised to obtain the latest version of device specifications before
relying on any published information and before placing orders for products or services.
All rights reserved.

	Introduction
	DSSS Overview
	DSSS Modulator
	Direct Sequence Spreader
	FIR Filter
	Numerically Controlled Oscillator
	Modulator Design Files

	Channel Model
	Demodulator
	NCO
	FIR Filters
	Despreader
	Demodulator Design Files

	Simulation in ModelSim
	UART Interface
	Direct Sequence Spread Spectrum (DSSS) Modem Reference Design

