Visible to Intel only — GUID: sls1690740041568
Ixiasoft
1. Agilex™ 5 Variable Precision DSP Blocks Overview
2. Agilex™ 5 Variable Precision DSP Blocks Architecture
3. Agilex™ 5 Variable Precision DSP Blocks Operational Modes
4. Agilex™ 5 Variable Precision DSP Blocks Design Considerations
5. Native Fixed Point DSP Agilex™ FPGA IP Core References
6. Multiply Adder Intel® FPGA IP Core References
7. ALTMULT_COMPLEX Intel® FPGA IP Core References
8. LPM_MULT Intel® FPGA IP Core References
9. LPM_DIVIDE (Divider) Intel FPGA IP Core
10. Native Floating Point DSP Agilex™ FPGA IP References
11. Native AI Optimized DSP Agilex™ FPGA IP References
12. Document Revision History for the Agilex™ 5 Variable Precision DSP Blocks User Guide
2.1.1. Input Register Bank for Fixed-point Arithmetic
2.1.2. Pipeline Registers for Fixed-point Arithmetic
2.1.3. Pre-adder for Fixed-point Arithmetic
2.1.4. Internal Coefficient for Fixed-point Arithmetic
2.1.5. Multipliers for Fixed-point Arithmetic
2.1.6. Adder or Subtractor for Fixed-point Arithmetic
2.1.7. Accumulator, Chainout Adder, and Preload Constant for Fixed-point Arithmetic
2.1.8. Systolic Register for Fixed-point Arithmetic
2.1.9. Double Accumulation Register for Fixed-point Arithmetic
2.1.10. Output Register Bank for Fixed-point Arithmetic
2.2.1. Input Register Bank for Floating-point Arithmetic
2.2.2. Pipeline Registers for Floating-point Arithmetic
2.2.3. Multipliers for Floating-point Arithmetic
2.2.4. Adder or Subtractor for Floating-point Arithmetic
2.2.5. Output Register Bank for Floating-point Arithmetic
2.2.6. Exception Handling for Floating-point Arithmetic
3.2.2.1. FP16 Supported Precision Formats
3.2.2.2. Sum of Two FP16 Multiplication Mode
3.2.2.3. Sum of Two FP16 Multiplication with FP32 Addition Mode
3.2.2.4. Sum of Two FP16 Multiplication with Accumulation Mode
3.2.2.5. FP16 Vector One Mode
3.2.2.6. FP16 Vector Two Mode
3.2.2.7. FP16 Vector Three Mode
5.1. Native Fixed Point DSP Agilex™ FPGA IP Release Information
5.2. Supported Operational Modes
5.3. Maximum Input Data Width for Fixed-point Arithmetic
5.4. Maximum Output Data Width for Fixed-point Arithmetic
5.5. Parameterizing Native Fixed Point DSP IP
5.6. Native Fixed Point DSP Agilex™ FPGA IP Signals
5.7. IP Migration
10.4.1. FP32 Multiplication Mode Signals
10.4.2. FP32 Addition or Subtraction Mode Signals
10.4.3. FP32 Multiplication with Addition or Subtraction Mode Signals
10.4.4. FP32 Multiplication with Accumulation Mode Signals
10.4.5. FP32 Vector One and Vector Two Modes Signals
10.4.6. Sum of Two FP16 Multiplication Mode Signals
10.4.7. Sum of Two FP16 Multiplication with FP32 Addition Mode Signals
10.4.8. Sum of Two FP16 Multiplication with Accumulation Mode Signals
10.4.9. FP16 Vector One and Vector Two Modes Signals
10.4.10. FP16 Vector Three Mode Signals
Visible to Intel only — GUID: sls1690740041568
Ixiasoft
5.3.1. Using Less Than 36-Bit Operand In 18 x 18 Plus 36 Mode Example
This example shows how to configure the Native Fixed Point DSP Agilex™ FPGA IP to use 18 × 18 Plus 36 operational mode with a signed 12-bit input data of 101010101010 (binary) instead of a 36-bit operand.
- Set Representation format for bottom multiplier x operand to signed.
- Set Representation format for bottom multiplier y operand to unsigned.
- Set 'bx' input bus width to 18.
- Set 'by' input bus width to 18.
- Provide 18-bit signed representation data, example,'111111111111111111', to bx input bus.
This step is to perform sign extension. The initial 12 bits input is extended to 36 bits with bx representing the most significant 18 bits.
- '111111101010101010', to Provide data 18-bit signed representation data, example, by input bus.
Note: '111111101010101010' is a 12 bits input example. To fill out the rest of the unused bits, you must set the unused bits to 1'b1 to represent it as a signed input.