Visible to Intel only — GUID: nbu1552442447794
Ixiasoft
2.1.1. Directory Structure
2.1.2. Generating the Design
2.1.3. Simulating the E-tile Ethernet IP for Intel Agilex® 7 FPGA Design Example Testbench
2.1.4. Compiling the Compilation-Only Project
2.1.5. Compiling and Configuring the Design Example in Hardware
2.1.6. Testing the E-tile Ethernet IP for Intel Agilex® 7 FPGA Hardware Design Example
2.2.1.1. Non-PTP 10GE/25GE MAC+PCS with Optional RS-FEC Simulation Design Example
2.2.1.2. PTP 10GE/25GE MAC+PCS with Optional RS-FEC Simulation Design Example
2.2.1.3. 10GE/25GE PCS Only, OTN, or FlexE with Optional RS-FEC Simulation Design Example
2.2.1.4. 10GE/25GE Custom PCS with Optional RS-FEC Simulation Design Example
2.3.1. Simulation Design Examples
2.3.2. Hardware Design Examples
2.3.3. 100GE MAC+PCS with Optional RS-FEC Design Example Interface Signals
2.3.4. 100GE PCS with Optional RS-FEC Design Example Interface Signals
2.3.5. 100GE MAC+PCS with Optional RS-FEC Design Example Registers
2.3.6. 100GE PCS with Optional RS-FEC Design Example Registers
2.3.1.1. Non-PTP E-tile Ethernet IP for Intel Agilex® 7 FPGA 100GE MAC+PCS with Optional RS-FEC Simulation Design Example
2.3.1.2. E-tile Ethernet IP for Intel Agilex® 7 FPGA 100GE MAC+PCS with Optional RS-FEC and PTP Simulation Design Example
2.3.1.3. E-tile Ethernet IP for Intel Agilex® 7 FPGA 100GE PCS Only with Optional RS-FEC Simulation Design Example
2.3.1.4. E-tile Ethernet IP for Intel Agilex® 7 FPGA 100GE OTN with Optional RS-FEC Simulation Design Example
2.3.1.5. E-tile Ethernet IP for Intel Agilex® 7 FPGA 100GE FlexE with Optional RS-FEC Simulation Design Example
2.3.2.1. 100GE MAC+PCS with Optional RS-FEC and PMA Adaptation Flow Hardware Design Example Components
2.3.2.2. 100GE MAC+PCS with Optional RS-FEC and PTP Hardware Design Example
2.3.2.3. 100GE PCS with Optional RS-FEC Hardware Design Example Components
2.3.2.4. Ethernet Adaptation Flow for 100G (CAUI-2) PAM4 <---> 100G (CAUI-4) NRZ Dynamic Reconfiguration Design Example
3.1.1. Hardware and Software Requirements
3.1.2. Generating the Design
3.1.3. Directory Structure
3.1.4. Simulating the Design Example Testbench
3.1.5. Compiling the Compilation-Only Project
3.1.6. Compiling and Configuring the Design Example in Hardware
3.1.7. Testing the E-tile CPRI PHY Intel® FPGA IP Hardware Design Example
4.1. Quick Start Guide
4.2. 10G/25G Ethernet Dynamic Reconfiguration Design Examples
4.3. 25G Ethernet to CPRI Dynamic Reconfiguration Design Example
4.4. CPRI Dynamic Reconfiguration Design Examples
4.5. 100G Ethernet Dynamic Reconfiguration Design Example
4.6. Document Revision History for the E-Tile Dynamic Reconfiguration Design Example
4.5.1. Functional Description
4.5.2. Testing the 100G Ethernet Dynamic Reconfiguration Hardware Design Example
4.5.3. Simulation Design Examples
4.5.4. 100GE DR Hardware Design Examples
4.5.5. 100G Ethernet Dynamic Reconfiguration Design Example Interface Signals
4.5.6. 100G Ethernet Dynamic Reconfiguration Examples Registers
4.5.7. Steps to Enable FEC
4.5.8. Steps to Disable FEC
Visible to Intel only — GUID: nbu1552442447794
Ixiasoft
4.1.3.1. Running the Simulation
Generate a .HEX file to run and simulate the design example's default Nios® V-based testbench. To generate the .HEX file, run the file generate_hex_script.sh from the software directory <design_example_dir>/software/dynamic_reconfiguration_sim.
Note: The HEX file is generated based on the C-code design example simulation source files in the dynamic_reconfiguration_sim folder. If you modify the source files, run the file generate_hex_script.sh or use the Eclipse-based Ashling RiscFree IDE Tool to generate a new HEX file. Refer to Generating New HEX File using Eclipse-based Ashling RiscFree IDE Tool section for the steps on generating a new HEX file using Eclipse-based Ashling RiscFree IDE Tool, and simulating the testbench using the new HEX file.
Follow these steps to simulate the testbench:
- Open the <simulator_name>_files.tcl script in the example_testbench/setup_scripts/common directory.
- Edit the TCL script to change the existing nios_system_oc_mem2_0_onchip_memory2_0.hex file directory to the generated HEX file directory.
For example, change the following line in the TCL script from:
lappend memory_files "[normalize_path "$QSYS_SIMDIR/../<design_example_dir>/hardware_test_design/ip/nios_system/nios_system_oc_mem2_0/altera_avalon_onchip_memory2_<version>/sim/nios_system_oc_mem2_0_onchip_memory2_0.hex"]"
tolappend memory_files "[normalize_path "$QSYS_SIMDIR/../<design_example_dir>/software/dynamic_reconfiguration_sim/nios_system_oc_mem2_0_onchip_memory2_0.hex"]"
- Using the supported simulator of your choice, change to the testbench simulation directory to <design_example_dir>/example_testbench/ <simulator_name>.
- Run the simulation script for the simulator. The script compiles and runs the testbench in the simulator. Refer to the table Steps to Simulate the Testbench.
- Analyze the results. The successful testbench performs the dynamic reconfiguration (DR) operations, sends and transmits packets for each DR operation, and displays "Nios has completed its transactions" and "Simulation PASSED" after completing the simulation.
Table 27. Steps to Simulate the Testbench Simulator Instructions ModelSim* SE or QuestaSim* In the command line, type vsim -do run_vsim.do If you prefer to simulate without bringing up the ModelSim GUI, type vsim -c -do run_vsim.do
Note: The Questa* Intel® FPGA Edition simulator does not have the capacity to simulate this IP core. You must use ModelSim* SE or QuestaSim* .Xcelium* In the command line, type sh run_xcelium.sh VCS* / VCS* MX In the command line, type sh run_vcs.sh or sh run_vcsmx.sh Note: run_vcs.sh is only available if you select Verilog as the Generated HDL Format. If you select VHDL as the Generated HDL Format, you must simulate the testbench with a mixed language simulator using run_vcsmx.sh.Note: For Nios® V-based testbench, the simulation runs for more than 5 hours.