Visible to Intel only — GUID: dwx1530665720476
Ixiasoft
1.1. Comparison of the EPE and the Intel® Quartus® Prime Power Analyzer
1.2. Power Estimations and Design Requirements
1.3. Power Analyzer Walkthrough
1.4. Inputs for the Power Analyzer
1.5. Power Analysis in Modular Design Flows
1.6. Power Analyzer Compilation Report
1.7. Scripting Support
1.8. Power Analysis Revision History
1.4.2.1. Waveforms from Supported Simulators
1.4.2.2. .vcd Files from Third-Party Simulation Tools
1.4.2.3. Signal Activities from RTL (Functional) Simulation, Supplemented by Vectorless Estimation
1.4.2.4. Signal Activities from Vectorless Estimation and User-Supplied Input Pin Activities
1.4.2.5. Signal Activities from User Defaults Only
1.5.1. Complete Design Simulation
1.5.2. Modular Design Simulation
1.5.3. Multiple Simulations on the Same Entity
1.5.4. Overlapping Simulations
1.5.5. Partial Simulations
1.5.6. Node Name Matching Considerations
1.5.7. Glitch Filtering
1.5.8. Node and Entity Assignments
1.5.9. Default Toggle Rate Assignment
1.5.10. Vectorless Estimation
2.5.1. Clock Power Management
2.5.2. Pipelining and Retiming
2.5.3. Architectural Optimization
2.5.4. I/O Power Guidelines
2.5.5. Memory Optimization (M20K/MLAB)
2.5.6. DDR Memory Controller Settings
2.5.7. DSP Implementation
2.5.8. Reducing High-Speed Tile (HST) Usage
2.5.9. Unused Transceiver Channels
2.5.10. Periphery Power reduction XCVR Settings
Visible to Intel only — GUID: dwx1530665720476
Ixiasoft
2.1.5.1. Toggle Rate
The toggle rate of a signal is the average number of times that the signal changes value per unit of time. The units for toggle rate are transitions per second, and a transition is a change from 1 to 0, or 0 to 1.
Note: Inaccurate signal toggle rate data is the largest source of power estimation error.
Dynamic power increases linearly with the toggle rate as you charge the board trace model more frequently for logic and routing. The Intel® Quartus® Prime software models full rail-to-rail switching. For high toggle rates, especially on circuit output I/O pins, the circuit can transition before fully charging the downstream capacitance. The result is a slightly conservative prediction of power by the Power Analyzer.
Related Information