Visible to Intel only — GUID: nik1410905501054
Ixiasoft
1. Datasheet
2. Getting Started with the Avalon-MM Design Example
3. Parameter Settings
4. 64- or 128-Bit Avalon-MM Interface to the Endpoint Application Layer
5. Registers
6. Interrupts for Endpoints
7. Error Handling
A. PCI Express Protocol Stack
8. Transceiver PHY IP Reconfiguration
9. Throughput Optimization
10. Design Implementation
11. Additional Features
12. Debugging
B. Frequently Asked Questions for PCI Express
C. Lane Initialization and Reversal
D. Document Revision History
2.1. Running Qsys
2.2. Generating the Example Design
2.3. Understanding Simulation Log File Generation
2.4. Running a Gate-Level Simulation
2.5. Simulating the Single DWord Design
2.6. Generating Synthesis Files
2.7. Creating a Quartus® Prime Project
2.8. Compiling the Design
2.9. Programming a Device
2.10. Understanding Channel Placement Guidelines
4.1. 32-Bit Non-Bursting Avalon-MM Control Register Access (CRA) Slave Signals
4.2. Bursting and Non-Bursting Avalon® -MM Module Signals
4.3. 64- or 128-Bit Bursting TX Avalon-MM Slave Signals
4.4. Clock Signals
4.5. Reset
4.6. Interrupts for Endpoints when Multiple MSI/MSI-X Support Is Enabled
4.7. Hard IP Status Signals
4.8. Physical Layer Interface Signals
5.1. Correspondence between Configuration Space Registers and the PCIe Specification
5.2. Type 0 Configuration Space Registers
5.3. Type 1 Configuration Space Registers
5.4. PCI Express Capability Structures
5.5. Intel-Defined VSEC Registers
5.6. CvP Registers
5.7. 64- or 128-Bit Avalon-MM Bridge Register Descriptions
5.8. Programming Model for Avalon-MM Root Port
5.9. Uncorrectable Internal Error Mask Register
5.10. Uncorrectable Internal Error Status Register
5.11. Correctable Internal Error Mask Register
5.12. Correctable Internal Error Status Register
5.7.1.1. Avalon-MM to PCI Express Interrupt Status Registers
5.7.1.2. Avalon-MM to PCI Express Interrupt Enable Registers
5.7.1.3. PCI Express Mailbox Registers
5.7.1.4. Avalon-MM-to-PCI Express Address Translation Table
5.7.1.5. PCI Express to Avalon-MM Interrupt Status and Enable Registers for Endpoints
5.7.1.6. Avalon-MM Mailbox Registers
5.7.1.7. Control Register Access (CRA) Avalon-MM Slave Port
A.4.1. Avalon‑MM Bridge TLPs
A.4.2. Avalon-MM-to-PCI Express Write Requests
A.4.3. Avalon-MM-to-PCI Express Upstream Read Requests
A.4.4. PCI Express-to-Avalon-MM Read Completions
A.4.5. PCI Express-to-Avalon-MM Downstream Write Requests
A.4.6. PCI Express-to-Avalon-MM Downstream Read Requests
A.4.7. Avalon-MM-to-PCI Express Read Completions
A.4.8. PCI Express-to-Avalon-MM Address Translation for 32-Bit Bridge
A.4.9. Minimizing BAR Sizes and the PCIe Address Space
A.4.10. Avalon® -MM-to-PCI Express Address Translation Algorithm for 32-Bit Addressing
Visible to Intel only — GUID: nik1410905501054
Ixiasoft
4.8.2.2. Channel Placement in Arria V GZ and Stratix V GX/GT/GS Devices
Figure 15. Arria V GZ and Stratix V GX/GT/GS Gen1 and Gen2 Channel Placement Using the CMU PLLIn the following figures the channels shaded in blue provide the transmit CMU PLL generating the high-speed serial clock.
Figure 16. Arria V GZ and Stratix V GX/GT/GS Gen3 Channel Placement Using the CMU and ATX PLLsGen3 requires two PLLs to facilitate rate switching between the Gen1, Gen2, and Gen3 data rates. Channels shaded in blue provide the transmit CMU PLL generating the high-speed serial clock. The ATX PLL shaded in blue is the ATX PLL used in these configurations.
Figure 17. Arria V GZ and Stratix V GX/GT/GS Gen1 and Gen2 Channel Placement Using the ATX PLLSelecting the ATX PLL has the following advantages over selecting the CMU PLL:
- The ATX PLL saves one channel in Gen1 and Gen2 ×1, ×2, and ×4 configurations.
- The ATX PLL has better jitter performance than the CMU PLL.
Note: You must use the soft reset controller when you select the ATX PLL and you cannot use CvP.