Visible to Intel only — GUID: bhc1410931816784
Ixiasoft
1. About This IP
2. Getting Started with Intel FPGA IPs
3. Parameter Settings
4. Functional Description
5. Configuration Register Space
6. Interface Signals
7. Design Considerations
8. Timing Constraints
9. Testbench
10. Software Programming Interface
11. Triple-Speed Ethernet Intel® FPGA IP User Guide Archives
12. Document Revision History for the Triple-Speed Ethernet Intel® FPGA IP User Guide
A. Ethernet Frame Format
B. Simulation Parameters
4.1.1. MAC Architecture
4.1.2. MAC Interfaces
4.1.3. MAC Transmit Datapath
4.1.4. MAC Receive Datapath
4.1.5. MAC Transmit and Receive Latencies
4.1.6. FIFO Buffer Thresholds
4.1.7. Congestion and Flow Control
4.1.8. Magic Packets
4.1.9. MAC Local Loopback
4.1.10. MAC Error Correction Code (ECC)
4.1.11. MAC Reset
4.1.12. PHY Management (MDIO)
4.1.13. Connecting MAC to External PHYs
4.2.1. 1000BASE-X/SGMII PCS Architecture
4.2.2. Transmit Operation
4.2.3. Receive Operation
4.2.4. Transmit and Receive Latencies
4.2.5. GMII Converter
4.2.6. SGMII Converter
4.2.7. Auto-Negotiation
4.2.8. Ten-bit Interface
4.2.9. PHY Loopback
4.2.10. PHY Power-Down
4.2.11. 1000BASE-X/SGMII PCS Reset
5.1.1. Base Configuration Registers (Dword Offset 0x00 – 0x17)
5.1.2. Statistics Counters (Dword Offset 0x18 – 0x38)
5.1.3. Transmit and Receive Command Registers (Dword Offset 0x3A – 0x3B)
5.1.4. Supplementary Address (Dword Offset 0xC0 – 0xC7)
5.1.5. IEEE 1588v2 Feature (Dword Offset 0xD0 – 0xD6)
5.1.6. Deterministic Latency (Dword Offset 0xE1– 0xE3)
5.1.7. IEEE 1588v2 Feature PMA Delay
6.1.1. 10/100/1000 Ethernet MAC Signals
6.1.2. 10/100/1000 Multiport Ethernet MAC Signals
6.1.3. 10/100/1000 Ethernet MAC with 1000BASE-X/SGMII PCS Signals
6.1.4. 10/100/1000 Ethernet MAC with 1000BASE-X/SGMII 2XTBI PCS and Embedded PMA Signals (E-Tile)
6.1.5. 10/100/1000 Ethernet MAC with 1000BASE-X/SGMII 2XTBI PCS and Embedded PMA Signals (F-Tile)
6.1.6. 10/100/1000 Ethernet MAC Without Internal FIFO Buffers with 1000BASE-X/SGMII 2XTBI PCS Signals
6.1.7. 10/100/1000 Ethernet MAC Without Internal FIFO Buffers with IEEE 1588v2 and 1000BASE-X/SGMII 2XTBI PCS Signals
6.1.8. 10/100/1000 Ethernet MAC Without Internal FIFO Buffers with IEEE 1588v2, 1000BASE-X/SGMII 2XTBI PCS, SGMII Bridge, and Deterministic Latency Signals
6.1.9. 10/100/1000 Multiport Ethernet MAC with 1000BASE-X/SGMII PCS Signals
6.1.10. 10/100/1000 Ethernet MAC with 1000BASE-X/SGMII PCS and Embedded PMA Signals
6.1.11. 10/100/1000 Multiport Ethernet MAC with 1000BASE-X/SGMII PCS and Embedded PMA Signals
6.1.12. 1000BASE-X/SGMII PCS Signals
6.1.13. 1000BASE-X/SGMII 2XTBI PCS Signals
6.1.14. 1000BASE-X/SGMII PCS and PMA Signals
6.1.1.1. Clock and Reset Signals
6.1.1.2. Clock Enabler Signals
6.1.1.3. MAC Control Interface Signals
6.1.1.4. MAC Status Signals
6.1.1.5. MAC Receive Interface Signals
6.1.1.6. MAC Transmit Interface Signals
6.1.1.7. Pause and Magic Packet Signals
6.1.1.8. MII/GMII/RGMII Signals
6.1.1.9. PHY Management Signals
6.1.1.10. ECC Status Signals
6.1.11.1. IEEE 1588v2 RX Timestamp Signals
6.1.11.2. IEEE 1588v2 TX Timestamp Signals
6.1.11.3. IEEE 1588v2 TX Timestamp Request Signals
6.1.11.4. IEEE 1588v2 TX Insert Control Timestamp Signals
6.1.11.5. IEEE 1588v2 Time-of-Day (TOD) Clock Interface Signals
6.1.11.6. IEEE 1588v2 PCS Phase Measurement Clock Signal
6.1.11.7. IEEE 1588v2 PHY Path Delay Interface Signals
7.1. Optimizing Clock Resources in Multiport MAC with PCS and Embedded PMA
7.2. Sharing PLLs in Devices with LVDS Soft-CDR I/O
7.3. Sharing PLLs in Devices with GIGE PHY
7.4. Sharing Transceiver Quads
7.5. Migrating From Old to New User Interface For Existing Designs
7.6. Clocking Scheme of MAC with 2XTBI PCS and Embedded PMA
10.6.1. alt_tse_mac_get_common_speed()
10.6.2. alt_tse_mac_set_common_speed()
10.6.3. alt_tse_phy_add_profile()
10.6.4. alt_tse_system_add_sys()
10.6.5. triple_speed_ethernet_init()
10.6.6. tse_mac_close()
10.6.7. tse_mac_raw_send()
10.6.8. tse_mac_setGMII mode()
10.6.9. tse_mac_setMIImode()
10.6.10. tse_mac_SwReset()
Visible to Intel only — GUID: bhc1410931816784
Ixiasoft
6.1.1.6. MAC Transmit Interface Signals
Name | Avalon Streaming Signal Type | I/O | Description |
---|---|---|---|
Avalon Streaming Signals | |||
ff_tx_clk (In Platform Designer: transmit_clock_connection) |
clk | I | Transmit clock. All transmit signals are synchronized on the rising edge of this clock. Set this clock to the required frequency to get the desired bandwidth on the Avalon streaming transmit interface. This clock can be completely independent from tx_clk. |
ff_tx_wren | valid | I | Transmit data write enable. Assert this signal to indicate that the data on the following signals are valid: ff_tx_data[(DATAWIDTH-1):0], ff_tx_sop, and ff_tx_eop. In cut-through mode, keep this signal asserted throughout the frame transmission. Otherwise, the frame is truncated and forwarded to the Ethernet-side interface with an error. |
ff_tx_data[(DATAWIDTH-1):0] | data | I | Transmit data. DATAWIDTH can be either 8 or 32 depending on the FIFO data width configured. When DATAWIDTH is 32, the first byte transmitted is ff_tx_data[31:24] followed by ff_tx_data[23:16] and so forth. |
ff_tx_mod[1:0] | empty | I | Transmit data modulo. Indicates invalid bytes in the final frame word:
This signal applies only when DATAWIDTH is set to 32. |
ff_tx_sop | startofpacket | I | Transmit start of packet. Assert this signal when the first byte in the frame (the first byte of the destination address) is driven on ff_tx_data. |
ff_tx_eop | endofpacket | I | Transmit end of packet. Assert this signal when the last byte in the frame (the last byte of the FCS field) is driven on ff_tx_data. |
ff_tx_err | error | I | Transmit frame error. Assert this signal with the final byte in the frame to indicate that the transmit frame is invalid. The MAC function forwards the invalid frame to the GMII with an error. |
ff_tx_rdy | ready | O | MAC ready. When asserted, the MAC function is ready to accept data from the user application. |
Component-Specific Signals | |||
ff_tx_crc_fwd | — | I | Transmit CRC insertion. Set this signal to 0 when ff_tx_eop is set to 1 to instruct the MAC function to compute a CRC and insert it into the frame. If this signal is set to 1, the user application is expected to provide the CRC. |
tx_ff_uflow | — | O | Asserted when an underflow occurs on the transmit FIFO buffer. |
ff_tx_septy | — | O | Deasserted when the FIFO buffer is filled to or above the section-empty threshold defined in the tx_section_empty register. User applications can use this signal to indicate when to stop writing to the FIFO buffer and initiate backpressure. |
ff_tx_a_full | — | O | Asserted when the transmit FIFO buffer reaches the almost- full threshold. |
ff_tx_a_empty | — | O | Asserted when the transmit FIFO buffer goes below the almost-empty threshold. |