Visible to Intel only — GUID: esc1445894092043
Ixiasoft
Answers to Top FAQs
1. Hyperflex® FPGA Architecture Introduction
2. Hyperflex® Architecture RTL Design Guidelines
3. Compiling Hyperflex® Architecture Designs
4. Design Example Walk-Through
5. Retiming Restrictions and Workarounds
6. Optimization Example
7. Hyperflex® Architecture Porting Guidelines
8. Appendices
9. Hyperflex® Architecture High-Performance Design Handbook Archive
10. Hyperflex® Architecture High-Performance Design Handbook Revision History
2.4.2.1. High-Speed Clock Domains
2.4.2.2. Restructuring Loops
2.4.2.3. Control Signal Backpressure
2.4.2.4. Flow Control with FIFO Status Signals
2.4.2.5. Flow Control with Skid Buffers
2.4.2.6. Read-Modify-Write Memory
2.4.2.7. Counters and Accumulators
2.4.2.8. State Machines
2.4.2.9. Memory
2.4.2.10. DSP Blocks
2.4.2.11. General Logic
2.4.2.12. Modulus and Division
2.4.2.13. Resets
2.4.2.14. Hardware Re-use
2.4.2.15. Algorithmic Requirements
2.4.2.16. FIFOs
2.4.2.17. Ternary Adders
5.2.1. Insufficient Registers
5.2.2. Short Path/Long Path
5.2.3. Fast Forward Limit
5.2.4. Loops
5.2.5. One Critical Chain per Clock Domain
5.2.6. Critical Chains in Related Clock Groups
5.2.7. Complex Critical Chains
5.2.8. Extend to locatable node
5.2.9. Domain Boundary Entry and Domain Boundary Exit
5.2.10. Critical Chains with Dual Clock Memories
5.2.11. Critical Chain Bits and Buses
5.2.12. Delay Lines
Visible to Intel only — GUID: esc1445894092043
Ixiasoft
2.1.1. Set a High-Speed Target
For silicon efficiency, set your speed target as high as possible. The Hyperflex® architecture LUT is essentially a tiny ROM capable of a billion lookups per second. Operating this LUT at 156 MHz uses only 15% of the capacity.
While setting a high-speed target, you must also maintain a comfortable guard band between the speed at which you can close timing, and the actual system speed required. Addressing the timing closure initially with margin is much easier.