Visible to Intel only — GUID: mtr1430269572947
Ixiasoft
Answers to Top FAQs
1. Hyperflex® FPGA Architecture Introduction
2. Hyperflex® Architecture RTL Design Guidelines
3. Compiling Hyperflex® Architecture Designs
4. Design Example Walk-Through
5. Retiming Restrictions and Workarounds
6. Optimization Example
7. Hyperflex® Architecture Porting Guidelines
8. Appendices
9. Hyperflex® Architecture High-Performance Design Handbook Archive
10. Hyperflex® Architecture High-Performance Design Handbook Revision History
2.4.2.1. High-Speed Clock Domains
2.4.2.2. Restructuring Loops
2.4.2.3. Control Signal Backpressure
2.4.2.4. Flow Control with FIFO Status Signals
2.4.2.5. Flow Control with Skid Buffers
2.4.2.6. Read-Modify-Write Memory
2.4.2.7. Counters and Accumulators
2.4.2.8. State Machines
2.4.2.9. Memory
2.4.2.10. DSP Blocks
2.4.2.11. General Logic
2.4.2.12. Modulus and Division
2.4.2.13. Resets
2.4.2.14. Hardware Re-use
2.4.2.15. Algorithmic Requirements
2.4.2.16. FIFOs
2.4.2.17. Ternary Adders
5.2.1. Insufficient Registers
5.2.2. Short Path/Long Path
5.2.3. Fast Forward Limit
5.2.4. Loops
5.2.5. One Critical Chain per Clock Domain
5.2.6. Critical Chains in Related Clock Groups
5.2.7. Complex Critical Chains
5.2.8. Extend to locatable node
5.2.9. Domain Boundary Entry and Domain Boundary Exit
5.2.10. Critical Chains with Dual Clock Memories
5.2.11. Critical Chain Bits and Buses
5.2.12. Delay Lines
Visible to Intel only — GUID: mtr1430269572947
Ixiasoft
2.2.1.4. Duplicate and Pipeline Synchronous Resets
If a synchronous clear signal causes timing issues, duplicating the synchronous clear signal between the source and destination registers can resolve the timing issue. The registers pushed forward need not contend for Hyper-Register locations with registers being pushed back. For small logic blocks of a design, this method is a valid strategy to improve timing.